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Abstract

The authors of [I] provide an algorithm for finding a complete system of primitive orthogonal
idempotents for CM, where M is any finite R-trivial monoid. Their method relies on a technical
result stating that R-trivial monoids are equivalent to so-called weakly ordered monoids. We
provide an alternative algorithm, based only on the simple observation that an R-trivial monoid
may be realised by upper triangular matrices. This approach is inspired by results in the
field of coupled cell network dynamical systems, where £-trivial monoids (the opposite notion)
correspond to so-called feed-forward networks. We also show that our algorithm only has to be
performed for ZM, after which a complete system of primitive orthogonal idempotents may be
obtained for RM, where R is any ring with a known complete system of primitive orthogonal
idempotents. In particular, the algorithm works if R is any field.

1 Introduction

A monoid M may be seen as a generalisation of a group, in the sense that M is a set with an
associative multiplication and a unit e, but where the elements do not necessarily have inverses. If
an element 0 € M does have an inverse (that is, an element 7 € M such that o7 = 70 = e), then
the set

oM = {ok | K € M} (1)

necessarily equals M. It follows that when M is a group, the sets o M are all the same. Con-
versely, if the sets 0 M are the same for all o in a monoid M, then they are necessarily all equal to
eM = M. Tt can then easily be shown that M is a group, see for example [2]. Hence, groups can
be uniquely characterised as monoids for which the sets 0 M are the same for all ¢ € M. Using this
characterisation, an R-trivial monoid may be seen as a monoid that is farthest removed from being
a group. That is, a monoid is called R-trivial if the sets o M are different for all ¢ € M. Likewise,
a monoid is called L-trivial if the sets Mo are all different.

The authors of [I] provide an algorithm for finding a complete system of primitive orthogonal
idempotents for the algebra CM, where M is any finite R-trivial monoid. Their method uses a
technical result, which relates R-trivial monoids to so-called weakly ordered monoids. By reinter-
preting R-trivial monoids as networks, which may in turn be represented by adjacency matrices, we
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are able to provide an alternative algorithm. The advantage of this approach is that we will only
need basic combinatorial properties of upper triangular matrices. Moreover, due to the elementary
nature of our techniques, our algorithm may be used to provide a complete system of primitive or-
thogonal idempotents for RM, with R any ring for which a complete system of primitive orthogonal
idempotents is known. In fact, such a system for RM may be obtained immediately by combining
the one our algorithm produces for ZM with one for R. In particular, performing our algorithm for
ZM yields a complete system of primitive orthogonal idempotents for kM, with & any field. More
details on the network setting that inspired our approach are given in Remark The observation
that R-trivial monoids may be represented by upper triangular matrices is not new, see for example
[3], Corollary 10.9. However, we are not aware of anyone using this fact to decompose RM in this
straightforward manner.

The remainder of this paper is organised as follows. In Section [2] we introduce the basic notions
that we will be using throughout the paper. In Section [3|we then give an explicit realisation of RM
as upper triangular matrices with entries in the ring R. Next, we describe our algorithm for ZM
in Section [d] and we show in Section [b] how this result leads to a complete system of primitive or-
thogonal idempotents for RM. Finally, we illustrate our algorithm with a small example in Section

Gl

2 Preliminaries

Recall that a monoid M is a set, together with an associative multiplication M x M — M and
a unit e € M such that ed = ge = o for all 0 € M. A monoid is called R-trivial if the sets
oM = {op | p € M} are different for all o € M. That is, when oM = 7. M for 0,7 € M implies
oc=r.

Definition 2.1. Let R denote any ring (commutative or otherwise) with 1 # 0, and let M be a
finite monoid. We define the R-algebra of formal sums

RM = Zru-u rn € RVpueM (2)
pnemM

with coordinate-wise addition, i.e.

ZW'M‘*‘ZSW“:Z(W"'%)'“’ 3)

pneM pneM pneM

and multiplication

(ZTJ.(,).(ZST-T):ZZ(ras»-[m]zz S s |one @

oceM TEM ceEMTEM peEM \ o,reM
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The ring R furthermore acts on RM from the left by identifying R with Re C RM. That is, we

have
T'(ZTU'0>:(T'€)'<ZTU'U>:Z(T’/‘U)'O', (5)
oceEM ceEM ceEM
for r € R. Similarly, R acts on RM from the right. Finally, if we are given o € M, we will often
simply write o and —o for 1- 0 € RM and —1 -0 € RM, respectively. A



Just as in [I], our goal is to find a complete system of primitive orthogonal idempotents for RM
when M is R-trivial. That is, we are looking for a finite set of non-zero elements E1,..., E, C RM
such that

1. Each E; is idempotent. That is, E? = E; for all i € {1,...,p}.
2. The E; are orthogonal, meaning that E; - E; =0 for all 4, j € {1,...,p} with i # j.

3. The E; are primitive. In other words, if F; = X +Y for some X,Y € RM with X2 = X,
Y2 =Y and XY =Y X =0, then either X =0 or Y = 0.

4. Tt holds that }-7_, E; = e (completeness).

We will furthermore assume that we are given a complete system of primitive orthogonal idempotents
€1,...,€q for R (that is, € till ¢, are non-zero elements of R satisfying the four conditions above,
with X,Y € R in point 3 and €; + --- + ¢, = 1 in point 4). Note that for any field, and more
generally for any domain, a complete system of primitive orthogonal idempotents is given by only
the element 1. This is because the only idempotents in a domain are 0 and 1.

3 Realisation as upper triangular matrices

From here on out, M will always denote a finite R-trivial monoid. We will analyse RM by showing
that it is isomorphic to an R-algebra of upper triangular matrices. More precisely, we have the
following definition.

Definition 3.1. Let R be a ring with 1 # 0. We denote by Mat(R,n) the R-algebra of all n x n
matrices with entries in R. More precisely, multiplication in Mat(R,n) is given by

(A . B)i’j = Z Ai,kBk,j R (6)
k=1

for A, B € Mat(R,n) and 4,j € {1,...,n}. Addition is defined entry-wise, and R acts on Mat(R,n)
by r-A-s= (rld)A(sId) for r,s € R. Here we use the matrix rId given by (rId); ; = rd; j, with
d; ; the Kronecker delta function. Given r € R and A € Mat(R,n) we will simply write rA for r - A.
A

Next, we set n := #M and we choose an ordering of the elements in M, say M = {o1,...,0,}.
Given 0,05 € M, we may write A,, 5, := A; j for A € Mat(R,n). In particular, this means we may
write A, » for any two elements 0,7 € M. Using this notation, we define elements U, € Mat(R,n)
for 0 € M by

1 ifro=k

(UU)T,K = 6707/{ = { (7)

0 otherwise,
for all 7,k € M.
The following lemma, together with Lemma [3.3] may be considered the key observation of this

paper. It is motivated by a construction from the field of network dynamical systems, called the
fundamental network, see for example [4].



Lemma 3.2. The map
U : RM — Mat(R,n) (8)

Zru~u»—> ZruUu

pnemM pnemM
s an injective morphism of unitary R-algebras.

Proof. First, we claim that U,U, = U, for all 0,7 € M. Indeed, a calculation shows that

(UUUT)MN = Z (Uo')u,p(UT)p,K = Z 6/1,(77/)6;)7',& = 6#07'7& = (UO'T>}L,H7 (9)
pEM peEM

for all u, k € M. Next, we note that each of the matrices U, for ¢ € M has only entries given by 0
and 1. As a result, U, commutes with the diagonal matrix rId for all » € R, and we conclude that
U respects the left and right action of R. It moreover follows that

U(r-o)¥(s-7)=rUssU; = rsU,U; = 18Uy = ¥(rs-or) =¥((r-o)(s- 7)), (10)

for all ;s € R and 0,7 € M. From the fact that ¥(z) + U(y) = U(z + y) for all x,y € RM, we
conclude that in fact U(z)¥(y) = ¥(zy) for general z,y € RM. Note that we furthermore have
U, = Id. Finally, it remains to show that ¥ is injective. To this end, we see that

Z ruUu | = Z (ruUp)es = Z TOpe = T s (11)

pneEM - peEM peEM

for all Kk € M. It follows that U(x) = 0 for x € RM necessarily implies £ = 0. This proves the
lemma. O

Lemma 3.3. There exists an ordering of the elements of M for which every matriz in the image
of W is in upper triangular form.

Proof. We pick any ordering of M such that #01M > #o0s M > .-+ > #0, M. It suffices to show
that every matrix U, is upper triangular, and so that (U,)s,,; = 0 whenever i > j. Suppose
otherwise, so that (Ug)gi,gj = 1 for some ¢ > j. By definition of U,, we have ;0 = 0;. Hence, we
see that o; M = 0,0 M C 0;M. As we have ¢ > j, it holds that #o0;M > #0;M, and we conclude
that 0;,M = 0;M. This of course directly contradicts the definition of an R-trivial monoid, and so
we find that every element in the image of ¥ is indeed in upper triangular form. This proves the
lemma. O

We will assume from now on that the elements of M are ordered as in Lemma so that every
matrix in the image of ¥ is in upper triangular form. We will denote this image of RM under ¥
by U, C Mat(R,n). As expected, the diagonal entries of elements in U, will play a crucial role in
finding idempotents in RM. They will motivate the following definition.

Definition 3.4. Given an element 0 € M, we define the set
Lo ={reM |or=0}. (12)

Note that e € L, for all o € M, so that none of the sets L, is empty. It may however happen that
two of the sets L, coincide. We will describe when this happens by an equivalence relation ~ on
M. In other words, we have 0 ~ kK <— L, = L, for 0,k € M. We denote the class of an element
o € M under ~ by [o], which we call the loop-type of o. A



Remark 3.5. The term ‘loop-type’ again comes from an interpretation as coupled cell networks.
Specifically, feed-forward networks are networks where there is a partial ordering on the nodes, such
that every node only ‘feels’ itself and those nodes that are higher in the ordering. Another way of
saying this is that the only loops in the network are self-loops. Such networks are known to display
unusual switching or amplifying dynamical behaviour, see for example [5] and [6]. It can furthermore
be shown that (under some technical conditions) a network is a feed-forward network, if and only if
it is a quotient of the left Cayley graph of an L-trivial monoid (the opposite of an R-trivial monoid).
In this more visual approach to monoids, two elements of M have the same loop-type if and only if
their corresponding nodes in the Cayley graph have the same self-loops.

More generally, large classes of networks may be realised as quotients of the left Cayley graph of a
finite monoid, or of graphs encoding more general algebraic structure. This observation enables one
to translate network structure on a dynamical system to so-called hidden symmetry. In turn, this
allows one to preserve network structure along many dynamical reduction techniques, and to offer
explanations for the various invariant spaces, spectral degeneracies and unusual bifurcations often
observed in network dynamical systems. See [4, 6, [7, [8, [9] [L0L [IT], 2] for more on this formalism. A

Remark 3.6. Note that for any two elements k,0 € M we have (Uy)o,o = don,0- This gives the
useful observation that (Uy)s» = 1 if and only if we have k € L. A

Lemma 3.7. Let U = ZueM r,U, be an element of Z/{fa and let 0 € M be given. The o-diagonal
entry Uy o of U is given by
Usr = Y Tu- (13)

HELS

In particular, two elements o, 7 € M have the same loop-type, if and only if for every matrix U € Z/lfa
the o-diagonal entry of U equals the T-diagonal entry of U.

Proof. The lemma follows directly from the definition of U, . Specifically, we find

U0'70' = Z T[L(U},L)O',O' = Z T;,L(SO';,L,O' = Z Tu- (14)

pnemM pemM HEL,
It follows that U, , = U, , whenever [o] = [r]. Conversely, if [0] # [r] then we may choose kK € M
such that k € L, but k ¢ L, (without loss of generality). By Remark we find (U)o = 1,
whereas (Ug),» = 0. This finishes the proof. O

We end this section with a result that may greatly simplify determining loop-type equivalence. To
this end, we need the following important lemma.

Lemma 3.8. For o,7,7 € M we have 11,75 € Ly if and only if 11172 € L.

Proof. By Remark we have (Ur,)s» = 1 if and only if 7, € L,, for ¢ = 1,2. Note also that
any entry of U, is either 0 or 1. The statement of the lemma now follows immediately from the
identity (Ur,r,)o,0 = (Ur,)o,0(Ur,)o,0, which holds because the matrices U, for i € M are all upper
triangular. O

We now assume we are given a generating set S for M. In what follows, we write
LS =L,NS={keS | ok =0}, (15)

for an element o € M.



Proposition 3.9. Let S be a generating set for M. Two elements o,0’ € M have the same loop-type
if and only if the sets LS and LS, agree.

Proof. If 0 and ¢’ have the same loop-type, then £, = L/, so that L, NS =L, NS.

Conversely, suppose that £5 = Ef,. Let 7 € L, be given, and write 7 = 77 ... 7} for some generators
T, ..., Tk € S. By repeated application ofLemmawe find 71,...,7 € Ly, andso 1y, ..., 7, € LS.
We conclude that y,...,7; € Efl C L. Again by repeated application of Lemma we find
T=1m...7 € Lo, and we conclude that £, C L, By reversing the roles of o and ¢’ we arrive at
L, = Ly, so that indeed [o] = [0/]. This completes the proof. O

4 The case R=7

In this section we present the algorithm for finding a complete system of primitive orthogonal
idempotents in the case of R = Z. We then show in the next section how to use this to find a
complete system of primitive orthogonal idempotents for a general choice of R. As expected, an
important role will be played by the diagonal of an element of U%,t. We start by fixing some notation,
after which we list some easy observations.

Definition 4.1. Given an element U € Z/IJZ\A, we define the set
Dy:={ceM| Uy, =1}. (16)

We also write dy := #Dy for the number of ones on the diagonal of U, and we set n = #M as
before. Note that dy may be described independently of the identification between ZM and MJZW

for example by
o= 1} , (17)

TELS

dUZ#{O'EM

where

U=> r.-T. (18)

TEM
This follows directly from Lemma[3.7] Lastly, we define

Pop(U) :=1d —(1d —U*)* € U%, (19)
for all U € U%, and a,b € Z>,. A
Lemma 4.2.
1. An idempotent element of L{%,l has only zeroes and ones on its diagonal.

2. If an idempotent element of Z/IJZ\A has only ones on its diagonal at those places that correspond
to a single loop-type, then it is primitive. More precisely, if E € szvl is an tdempotent such that
the set Dg 1s a single equivalence class under ~, then E = X +Y with X and Y idempotent
implies X =0 orY =0.

3. Let U € U%,l be an element with only zeroes and ones on its diagonal, and suppose we have
a,b € Z>o such that a > n —dy and b > dy. Then Py, (U) is an idempotent element with the
same diagonal as U.



Proof. The first part follows from the fact that diagonal elements of triangular matrices are multi-
plicative. That is, for all 0 € M and U, U’ € UF} we have (UU')g,; = UyoU}, ,. It follows that any
diagonal element of an idempotent in L{j& is an idempotent in R. In particular, for R = Z we find
that the diagonal can only contain zeroes and ones.

For the second part, suppose that an idempotent U € Z/{jzvl can be written as the sum of two
idempotents X and Y. It follows from the first part that

DE = DX U DY . (20)

However, Lemma tells us that diagonal entries corresponding to loop-type equivalent monoid
elements are always the same. Therefore, the assumption on F means that either X or Y has only
zeroes on its diagonal. Let us suppose this is the case for X. It follows that X is a strictly upper
triangular matrix, and is therefore nilpotent (i.e. X~ = 0 for some N € N). As X is also assumed
to be idempotent, we find X = X2 =... = X¥ =0, and so X = 0.

For the third part, we first show that U and P, ;(U) have the same diagonal when a > n — dy
and b > dy. First, it can be seen that U and U® have the same diagonal. (Note that a = 0 can
only occur for dyy = n, in which case both U and UY = Id have only ones on the diagonal). Next,
we see that the diagonal of (Id —U*%) equals that of U® after changing the zeroes into ones and vice
versa. Again, the diagonal of (Id —U?) equals that of (Id —U®)’. (Note that b = 0 only occurs for
dy = 0, in which case both (Id —U?) and (Id —U%)° = Id have only ones on the diagonal). Finally,
we see that the diagonal of Id —(Id —U®)® again equals that of (Id —U?)®, but with the ones and
zeroes reversed. It follows that the diagonal of U indeed equals that of Id —(Id —U®)® = P, ,(U).
It remains to show that P, ;,(U) is an idempotent. To this end, note that any element U € U%, with
only zeroes and ones on the diagonal is conjugate to a real matrix of the form

0 °

This follows for example by using Jordan normal form. Note also that the matrix of has exactly
dy ones on the diagonal, as this is the algebraic multiplicity of the eigenvalue 1. It follows that U“

is of the form
0 0

Ue ~ . (22)




Likewise, we find

1 0 1 0
0 0
I 1 - 0 1
0 0
0 0 0 0
0 0
0
0 0
_ _7ra\b ~
Id —(1d —U*) - — 1 (23)
0 i
0 1
so that Id —(Id —U®)® = P, ,(U) is indeed an idempotent matrix. This finishes the proof. O

Next, we want to construct a set of elements with ones on the diagonal for entries corresponding
to exactly one loop-type, and zeroes for all other diagonal entries. Lemma (parts 2 and 3) then
allows us to construct primitive idempotents.

Proposition 4.3. Let 0 € M be given, and suppose S is a generating set for M. As before, we set
LS :=L,NS. The element

Toy:= [] U- [ (d-U,) (24)
TELS KES\LS
has diagonal entries given by

(T[U])u,u = {1 Yuro (25)

0 otherwise,
for p € M. This holds independently of the order in which the product in 18 evaluated.

Proof. First, let u be loop-type equivalent to o. By Proposition we have LS = £‘3 , so that we
may write

To= [] U- [[ (d-Us). (26)

TELE KRES\LE

In particular, we find

To = [] O [T A=Ti)ps- (27)

TELS RES\LE

Now, for 7 € Ef we find (U;),, = 1 by Remark On the other hand, k € S\ Ef implies
(Ux)pu = 0, so that again (Id —Uy),,, = 1. We conclude that indeed (T5]),,, = 1.

Next, suppose that [p] # [o], so that £, # L,. By Proposition we also have E‘E # L3, so that
there either exists a generator T contained in Ef, but not in £f7 or a generator x contained in E‘E,
but not in £5. In the first case, we find (U, ), = 0, so that (T5)),,. = 0. In the second case, we get
(Us)uu =1, and so (Id —Uy ), = 0. As we have k € S\ L5, we again conclude that (T},]),,, = 0.
Finally, we note that the discussion above is independent of the order in which the product of



is evaluated. More generally, for R a commutative ring the diagonal of any product in U /@1 is readily
seen to be independent of the ordering of the terms. O

Next, we want to guarantee that the idempotents we construct are orthogonal. To this end we have
the following transformation, inspired by the Gram-Schmidt procedure for orthogonalising a basis
of a linear space with respect to an inner product.

Proposition 4.4. Let Eq,..., E, be mutually orthogonal idempotents in Z/{/Z\A. That is, we have
E,E; = §;;E; for all i,5 € {1,...,m}. Suppose furthermore that T € L{/ZM is an element with
only zeroes and ones on the diagonal, in such a way that TE; has a vanishing diagonal for all
i€ {l,...,m}. In other words, we have Dr NDg, = O for alli € {1,...,m}. We define the element

m m m
Q::T—ZTE,»—ZEiT—&- Z E,TE;. (28)
i=1 i=1 i,j=1
Then @Q has the same diagonal as T and furthermore satisfies QE; = E;Q =0 for alli € {1,...,m}.

Proof. By assumption, it holds that T'E;, E;T and E;TE; for 4,j € {1,...,m} all have a vanishing
diagonal. From this we see that @ and T indeed have the same diagonal. Next, let k € {1,...,m}
be given. A direct calculation shows

QE,=TEy— Y TEE,— Y ETE,+ Y ETE;E (29)
=1 =1 i,j=1

— TEk — in; T(Sz,kEk — f; EZTEk + .il EiTéj’kEk
1= 1= )=

=TEy —TE.—» ETE;+Y ETE,=0.
i=1 1=1

A similar calculation shows that FE;Q = 0. This finishes the proof. O

Finally, it remains to guarantee completeness of the system of idempotents we will construct. To
this end, we have the following result.

Proposition 4.5. Suppose E,...,E, are mutually orthogonal idempotents such that X := E; +
-+ E, has only ones on its diagonal, then we necessarily have X = 1d.

Proof. As the E; are mutually orthogonal idempotents, we also have X2 = X . In particular, we find
(Id-X)?=Td—2X +X?=Td-2X 4+ X =1d—X . (30)

Moreover, the diagonal of X consists of only ones, so that Id —X is nilpotent. In other words, we
have (Id —X)™ = 0 for some n > 1. By applying equation repeatedly we find

0=Id-X)"=(Id-X)"'=-..=1d-X, (31)

so that indeed X = Id. Alternatively, from the fact that X has a diagonal consisting of only ones,
we may conclude that there exists a real matrix Y such that XY =Y X = Id. It again follows that
X = X?Y = XY =1d. This completes the proof. O



4.1 Summary; an algorithm for ZM

Finally, we have everything in order to present the algorithm for finding a complete system of
primitive orthogonal idempotents Ej, ..., E, for ZM. Analogous to Definition we define the
maps

'P%b M — ZM (32)
Pap(X) =e— (e = X",

for a,b € Z>¢. We assume the R-trivial monoid M is given, together with a generating set S C M
(for example S = M). As before, we set n := #M. The algorithm then proceeds in 3 steps.

1. For every element o0 € M, we construct the set
LS ={reS|or=0}. (33)

We will denote all the mutually distinct sets we obtain this way by Cgl up to Efp, p E
{1,...,n}. In other words, {o1,...,0,} is a complete system of representatives for the loop-
type relation. We also set

di=#{ceM| LS=LS}, (34)

for all ¢ € {1,...,p}. That is, d; denotes the number of elements in M that have the same
loop-type as o;.

2. Next, we calculate the elements

T; = H T H (e —k) € ZM, (35)

TELS KES\LYZ,
for all i € {1,...,p}, analogous to the elements Tj,, of Lemma

3. Next, we set Ey := Pq, p, (1), for any choice of a; and by such that a; > n —dy and by > d;.
We then construct the other E; recursively. If E; up to E,,_; are found, we set

m—1 m—1 m—1
Qm:=Tmn—Y TnEi— > ETn+ Y ET.E;. (36)
i=1 i=1 ij=1
We then define E,,, := P, .. (Qm), for any choice of a,, and by, such that a,, > n — d,, and
by > dpy,.
Theorem 4.6. The element Ey,...,E, € ZM as constructed above form a complete system of

primitive orthogonal idempotents.

Proof. We prove the theorem by showing that the analogous elements in U%,l under the isomorphism
of Lemma[3.2] form a complete system of primitive orthogonal idempotents. In doing so, we will use
the same notation for the elements in ZM as for the corresponding elements in Z/l%,l.

First, Lemmatells us that two element o, 0’ are loop-type equivalent, if and only if L5 = L5,
Next, it follows from Lemma that the diagonal of T; = Tj,,) consists of only zeroes and ones,
with only ones at the o-diagonal entries for which ¢ ~ ¢;. In particular, T; has exactly d; ones on
its diagonal. Moreover, for any o € M there is exactly one i € {1,...,p} such that (T}),, = 1.

10



By part 3 of Lemma the element Ey = P, 4, (T1) is an idempotent with the same diagonal as
Ti. Let us therefore assume that the first m — 1 elements E, ..., E,,_1 that we have found using
the algorithm are mutually orthogonal idempotents such that F; has the same diagonal as T; for all
1€ {1,...,m—1}. It follows that T}, E; has vanishing diagonal for all ¢ € {1,...,m —1}. Therefore,
Proposition [44] tells us that @, has the same diagonal as T,,, and furthermore satisfies Q,,, E; =
EiQn =0forallie{l,...,m—1}. It follows from part 3 of Lemma 4.2 that E,, = Pq, b, (@m)
is an idempotent with the same diagonal as Q.,, and therefore as T;,.

Now, we may assume that d,, < n = #M. Namely, if we had d; = n for some ¢ € {1,...,p} then
every element of M would have the same loop-type as ¢;. In that case we would have p = 1 and the
algorithm would stop after finding £;. Under the assumption d,, < n, we have a,, > n —d,, > 0,
from which it may be seen that P, _ (0) = 0. Therefore, there exists a polynomial with integer
coefficients Q,, p,. such that P, (X)=XQq, b, (X) = Qq, b, (X)X. It follows that

m

EiEm = Eipam,bm(Qm) = ElQm Qam,bm (Qm) =0. (37)
for all « = {1,...,m — 1}. Likewise, we find E,,E; = 0 for all i = {1,...,m — 1}. We conclude
that Fi,..., L, are mutually orthogonal idempotents with the same diagonals as T1,...,7T,. It

furthermore follows from lemma [£.2] part 2, that every E; is primitive.

Finally, it remains to show that E; + Ey + --- + E, = Id. However, as every E; has the same
diagonal as T;, we see that the sum E; 4+ E5 +- - -+ E, has a diagonal consisting of only ones. It now
follows from Proposition that indeed E; + Eo 4 - -+ + E, = Id. This completes the proof. O

5 The general case

Finally, we show how the complete system of primitive orthogonal idempotents for ZM constructed
in the previous section leads to one for RM. Here, R is any ring with 1 # 0 and with a given
complete system of primitive orthogonal idempotents €y, ...,€,. The main observation is that any
ring R has a copy of either Z or Z/mZ for m € N in its center. More precisely, we have

Z/mZ={-- —1+4-1,-1,0,1,1+1,...} CR, (38)

where we also allow for m = 0 as Z/0Z = Z. Note that we exclude the case m = 1, as this would
imply 1 = 0 in R. Using the identification of equation , we get a ring homomorphism 6 from Z
to R, given explicitly by

O(z)=14+14--- 4 1(z times) for z € Z. (39)

The homomorphism 6 then induces a ring homomorphism © from ZM to RM, given by
@(ZTU~J>=ZG(7‘U)~J (40)
oceEM ocEM
for r, € Z. In turn, we get a ring homomorphism ©’ from Z/ljZVl to L{/@(, given by
o’ (Z rgUU> = 0(ro)U,, (41)
oceM oceM

where we use U, to denote the matrix of Section [3|in both M%,t and L{/&. Note that it also holds
that ©'(X); ; = 0(X, ;) for X € U%, and for all i, j € {1,...,n}. Moreover, under the identification
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of equation we may also write 0(z) = Z for the class of z € Z in Z/mZ. Motivated by this, we
will simply write X := ©’(X) to denote the element in UL corresponding to X € U%,.

Let En,..., E, be a complete system of primitive orthogonal idempotents for L{%A obtained by
the construction of Section We construct the corresponding elements E1, ..., E, in L. Note
that we still have E;E; = 6; ;E; for all 4,5 € {1,...,p}, as well as > 0_| E; = Id = Id. It may
however happen that some of the elements E; are not primitive anymore. We also note that the
diagonal of every matrix F; consists of only zeroes and ones, with a non-zero number of ones. This
in particular implies that E; # 0. Finally, we note that the entries of E; are all in the center of R.
Using these observations, we may prove the following result.

Theorem 5.1. Let Ey,...,E, be a complete system of primitive orthogonal idempotents for L{jzvl
obtained by the construction of Section and let €1,...,¢4 be a complete system of primitive
orthogonal idempotents for R. Then, a complete system of primitive orthogonal idempotents for
RM is given by (e;E;){7_, .

Proof. As the entries of every E; are in the center of R, we have
GiEjEkEl = EiEkEjEl = 5i7kq5jylfj = 6i,k5j,l€iEj s (42)

for all 4,k € {1,...,q} and j,l € {1,...,p}. This shows that the elements €;E; are mutually
orthogonal idempotents. Note also that none of the matrices €;E; equals 0, as at least one diagonal
entry of €;F; equals €; # 0. Next, we see that

zq:ZeiEj:Z(iei>Ej:Zp:1.Ej:1d. (43)

It remains to show that every eiEj is primitive. To this end, let XY € u}a be two mutually
orthogonal idempotents such that X +Y = ¢;F;. In particular, for every 0 € M we have X, , +

Yo = (6E})00, with X, , and Y, , mutually orthogonal idempotents in R.

Let us first assume that o and o; have different loop-type, so that (qu),,J = 0. Setting r := X, »
we get Y, , = —r, > =7 and —1? = X,, , Y, » = 0. We conclude that r = X, , =Y, , = 0.

If on the other hand we have o ~ ¢, then we find X, , + Y, , = (eiEj)gyc, =¢; for X, and Y, »
mutually orthogonal idempotents. However, €; was assumed to be primitive, so that we find X, , =0
or Y, » = 0. Finally, recall that diagonal entries corresponding to loop-type equivalent elements are
always the same, by Lemma [3.7] It follows that either X or Y has a fully vanishing diagonal. Let
us assume this is the case for X. We find that X™ = 0, so that we have X = X2 =... = X" = 0.

This shows that €;E; is indeed primitive, thereby proving the theorem. O

Remark 5.2. Given a monoid M, we may form the opposite monoid M°P. This latter monoid has
the same set of elements and unit as M, but with multiplication o°? given by o 0°? 7 := T oo
for o,7 € M°P. Here, o denotes multiplication in M. It follows that a monoid M is L-trivial, if
and only if M°P is R-trivial. In particular, we may use our results to obtain a complete system of
primitive orthogonal idempotents for a finite £-trivial monoid as well.

To this end, let M be an L-trivial monoid and assume R is a ring with a given system of
idempotents €1, ..., €. Similar to the opposite monoid, we may construct the opposite rings R
and (RM)°P. One then easily verifies that (RM)°? = R°P M°P. Moreover, it follows from the
definition of a complete system of primitive orthogonal idempotents that the identification between
R and R°P as sets respects such systems. Hence, the elements €,...,¢, also form a system of
idempotents for R%’. As M°P is R-trivial, we get a system of idempotents (e;E;){7_, for R MOP.

As before, it follows that (e;E;){7_, is a system of idempotents for RM = (R MP)°P as well. A
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Figure 1: The multiplication table of an R-trivial monoid M = {1,2,3,4,5}

Remark 5.3. Let M be a finite R- or L-trivial monoid. As every field k has only the idempo-
tents 0 and 1, a complete system of primitive orthogonal idempotents for kM is simply given by
{E4,... ,Fp}. Thus, such a system is in essence independent of the chosen field k. This result is in
stark contrast with the case of finite groups. For example, the group ring (Z/37Z)k decomposes into
two irreducible representations for £k = R, but in three for £ = C. Therefore, a complete system of
primitive orthogonal idempotents for (Z/3Z)k has two elements for k = R, but three for k = C. A

6 An example

We will now illustrate our algorithm with an example. Let M = {1,2,3,4,5} be the monoid with
five elements and multiplication table given by Figure [I} The unit of M is 1, and it may be seen
that M is generated by the set S := {1,2,3}. By looking at the entries in each row, one can verify
that M is in fact R-trivial. We will go through the algorithm of Section [4.1]to determine a complete
system of primitive orthogonal idempotents for ZM.

1. We first determine the sets LS := {7 € S | o7 = o} for all ¢ € M. From the multiplication
table [I] we may see that

L£9=L5=1{1}y, L5=L3=L5=1{1,23}=S. (44)

It follows that the loop-type relation is given by 1 ~ 3 and 2 ~ 4 ~ 5. In particular, every
element has the same loop-type as either 1 or 2. The number of elements with the same
loop-type as 1 is given by d; = 2 and the number of elements with the same loop-type as 2 is
given by dy = 3.

2. Next, we calculate the elements 77 and T5:
h=][-]] a-#»=10-21-3)=1-3-2+2=1-3, (45)
TEL] KES\LT
T=][]r=123=2.
TES
3. After determining Ty and T3, we calculate Ey = Py, p, (T1) = 1— (L —=T7)" fora; =n—d; =
572:3andb1:d1:2:
TP=(1-33=1-3-3+2-5 (46)
1-T$=3-3-2-5
1-T3)*=(3-3-2-5?2=5
1-(1-T})?*=1-5.
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Hence, we find E; = 1 — 5. One verifies that indeed E? = E;.
Next, we calculate Qo:

Q2 =Ty —T2E) — E\T> + E1 T2 B, (47)
=2-2(1-5)—(1-5)2+ (1—5)2(1-5)
=2-(2-2)—(2-5)+(1-5)(2—-2)
=2-0—-(2-5)+0=5.

Note that Qs already satisfies Q3 = Q, and that we have E; + Q, = 1. Therefore, we have

found a complete system of primitive orthogonal idempotents if we set Fs = Q2 = 5. To
complete our algorithm, for any as > 1 and b > 1 we have

Pagha(@2) =1-(1-5)2=1-(1-5)"2=1-(1-5)=5, (48)
so that we indeed find E5 = 5. We have thus found a complete system of primitive orthogonal
idempotents given by £y =1 — 5 and Es = 5. A
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