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Abstract

We present a novel method for high-order phase reduction in networks
of weakly coupled oscillators and, more generally, perturbations of re-
ducible normally hyperbolic (quasi-)periodic tori. Our method works by
computing an asymptotic expansion for an embedding of the perturbed
invariant torus, as well as for the reduced phase dynamics in local coor-
dinates. Both can be determined to arbitrary degrees of accuracy, and
we show that the phase dynamics may directly be obtained in normal
form. We apply the method to predict remote synchronisation in a chain
of coupled Stuart-Landau oscillators.

1 Introduction

Many systems in science and engineering consist of coupled periodic processes.
Examples vary from the motion of the planets, to the synchronous flashing of
fireflies [5], and from the activity of neurons in the brain [11], to power grids and
electronic circuits. The functioning and malfunctioning of these coupled systems
is often determined by a form of collective behaviour of its constituents, perhaps
most notably their synchronisation [1, 26]. For example, synchronisation of
neurons plays a critical role in cognitive processes [23, 24].

In this paper, we consider the situation where the coupling between the
periodic processes is weak, a case that is amenable to rigorous mathematical
analysis. Specifically, we assume that the evolution of the processes can be
modelled by a system of differential equations of the form

ẋj = Fj(xj) + εGj(x1, . . . , xm) for xj ∈ RMj and j = 1, . . . ,m . (1.1)

The vector fields Fj : RMj → RMj in (1.1) determine the dynamics of the
uncoupled oscillators: we assume that each Fj possesses a hyperbolic Tj-periodic
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orbit Xj(t). In the uncoupled limit—when ε = 0—equations (1.1) thus admit a
normally hyperbolic periodic or quasi-periodic invariant torus T0 ⊂ RM (where
M := M1 + . . . +Mm), consisting of the product of these periodic orbits. The
functions Gj in (1.1) model the interaction between the oscillators, for example
through a (hyper-)network. The interaction strength 0 ≤ ε ≪ 1 is assumed
small, so that the unperturbed torus T0 persists as an invariant manifold Tε for
(1.1), depending smoothly on ε, as is guaranteed by Fénichel’s theorem [8, 30].

The process of finding the equations of motion that govern the dynamics
on the persisting torus Tε is usually referred to as phase reduction [20, 21, 25].
Phase reduction has proved a powerful tool in the study of the synchronisation of
coupled oscillators, especially because it often realises a considerable reduction
of the dimension—and hence complexity—of the system. Various methods of
phase reduction have been introduced over the past decades, the most well-
known appearing perhaps in the work on chemical oscillations of Kuramoto
[17]. We refer to [25] for an extensive overview of established phase reduction
techniques, and refrain from providing an overview of these methods here.

Most existing phase reduction methods provide a first-order approximation
of the dynamics on the persisting invariant torus in terms of the small cou-
pling parameter. However, there are various instances where such a first-order
approximation is insufficient, see [4, 16, 18, 27, 22], in particular when the first-
order reduced dynamics is structurally unstable. For instance, it was observed
in [16] that “remote synchronisation” [3] cannot be analysed with first-order
methods. More accurate “high-order phase reduction” techniques (that go be-
yond the first-order approximation) have only been introduced very recently
[4, 10, 18]. They have already been applied successfully, for example to predict
remote synchronisation [16]. However, to the best of our knowledge, mathemat-
ically rigorous high-order phase reduction methods have only been derived in
the special case that the unperturbed oscillators are either Stuart-Landau os-
cillators [10, 18] or deformations thereof [2, 4]. In that setting, phase reduction
can be performed by computing an expansion of the phase-amplitude relation
that defines the invariant torus. However, this procedure does not generalise to
arbitrary systems of the form (1.1).

This paper presents a novel method for high-order phase reduction, that
applies to general coupled oscillator systems of the form (1.1). Our method
works by computing an expansion (in the small parameter ε) of an embedding

e : (R/2πZ)m → RM

of the persisting invariant torus Tε. In addition, it computes an expansion of
the dynamics on Tε in local coordinates, in the form of a so-called “reduced
phase vector field”

f : (R/2πZ)m → Rm

on the standard torus (R/2πZ)m. We find these e and f by solving a so-called
“conjugacy equation”. Our method is thus inspired by the work of De la Llave
et al. [13], who popularised the idea of finding invariant manifolds by solving
conjugacy equations. In fact, this idea was used in [6] to design a quadratically
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convergent iterative scheme for finding normally hyperbolic invariant tori. How-
ever, in [6] these tori are required to carry Diophantine quasi-periodic motion,
not only before but also after the perturbation.

The phase reduction method presented in this paper is more similar in nature
to the parametrisation method developed in [19]. There the idea of parametrisa-
tion is used to calculate expansions of slow manifolds and their flows in geometric
singular perturbation problems [30]. Just like the method in [19], the phase re-
duction method presented here yields asymptotic expansions to finite order, but
it poses no restrictions on the nature of the dynamics on the invariant torus.

We now sketch the idea behind our method. Let us write F0 for the vector
field on RM = RM1 × . . . × RMm that governs the dynamics of the uncoupled
oscillators in (1.1), that is,

F0(x1, . . . , xm) := (F1(x1), . . . , Fm(xm)) . (1.2)

Our starting point is an embedding of the invariant torus T0 for this F0. Recall
our assumption that every Fj possesses a hyperbolic periodic orbit Xj(t) of
minimal period Tj > 0. We denote the frequency of this orbit by ωj :=

2π
Tj
. An

obvious embedding of T0 is the map e0 : (R/2πZ)m → RM defined by

e0(ϕ) = e0(ϕ1, . . . , ϕm) :=
(
X1

(
ω−1
1 ϕ1

)
, . . . , Xm

(
ω−1
m ϕm

))
. (1.3)

In fact, this e0 sends the periodic or quasi-periodic solutions of the ODEs

ϕ̇ = ω := (ω1, . . . , ωm)

on (R/2πZ)m to integral curves of F0. In other words—see also Lemma 2.1
below—it satisfies the conjugacy equation

e′0 · ω = F0 ◦ e0 .

The idea is now that we search for an asymptotic approximation of an embedding
of the persisting torus Tε by solving a similar conjugacy equation. We do this
by making a series expansion ansatz for such an embedding, of the form

e = e0 + εe1 + ε2e2 + . . . : (R/2πZ)m → RM ,

as well as for a reduced phase vector field

f = ω + εf1 + ε2f2 + . . . : (R/2πZ)m → Rm .

Indeed, writing F = F0 + εF1 : RM → RM , with F0 as above, and

F1(x) := (G1(x), . . . , Gm(x))

denoting the coupled part of (1.1), we have that e maps integral curves of f to
solutions of (1.1), exactly when the conjugacy equation

e′ · f = F ◦ e
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holds. If this is the case, then Tε = e((R/2πZ)m) is the persisting invariant
torus, whereas the vector field f on (R/2πZ)m represents the dynamic on Tε in
local coordinates, that is, it determines the reduced phase dynamics.

We will see that the conjugacy equation for (e, f) translates into a sequence
of iterative equations for (e1, f1), (e2, f2), . . .. We will show how to solve these
iterative equations, which then allows us to compute the expansions for e and f
to any desired order in the small parameter. Because the embedding of the torus
Tε is not unique, neither are the solutions (ej , fj) to these iterative equations.
We characterize the extent to which one is free to choose these solutions, and we
show how this freedom can be exploited to obtain fj that are in normal form.
This means that “nonresonant” terms have been removed from the reduced
phase equations to high order.

A crucial requirement for the solvability of the iterative equations is that the
torus T0 is reducible. Reducibility is a property of the unperturbed dynamics
normal to T0. We shall define it at the hand of an embedding of the so-called
fast fibre bundle of T0. We call such an embedding a fast fibre map. The fast
fibre map is an important ingredient of our method. An invariant torus for an
uncoupled oscillator system is always reducible. We show in Section 5 how, in
this case, the fast fibre map can be obtained from the Floquet decompositions
of the fundamental matrix solutions of the periodic orbits Xj(t). We remark
that by using fast fibre maps, we are able to avoid the use of isochrons [12] to
characterise the dynamics normal to T0. Our parametrisation method is there-
fore not restricted to the case where the periodic orbits Xj(t) are stable limit
cycles—it suffices if they are hyperbolic. We also stress that our method is not
restricted to weakly coupled oscillator systems: it applies whenever the unper-
turbed embedded torus T0 is quasi-periodic, normally hyperbolic and reducible.

This paper is organised as follows. In section 2 we discuss the conjugacy
problem for (e, f) in more detail, and derive the iterative equations for (ej , fj).
In section 3 we introduce fast fibre maps and use them to define when an
embedded (quasi-)periodic torus is reducible. In section 4 we explain how the
fast fibre map can be used to solve the iterative equations for (ej , fj). We give
formulas for the solutions, and discuss their properties. Section 5 shows how to
compute the fast fibre map for a coupled oscillator system, treating the Stuart-
Landau oscillator as an example. We finish with an application/illustration of
our method in section 6, in which we prove that remote synchronisation occurs
in a chain of weakly coupled Stuart-Landau oscillators.

2 An iterative scheme

We start this section with a proof of our earlier claim about the embedding e0.
In the formulation of Lemma 2.1 below, we use the notation

∂ωe0 := e′0 · ω =
d

ds

∣∣∣∣
s=0

e0( ·+ sω) (2.1)
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for the (directional) derivative of e0 in the direction of the vector ω ∈ Rm. Like
e0 itself, ∂ωe0 is a smooth map from (R/2πZ)m to RM .

Lemma 2.1. The embedding e0 defined in (1.3) satisfies the conjugacy equation

∂ωe0 (= e′0 · ω) = F0 ◦ e0 .

Proof. Recall from (1.3) that (e0)j(ϕ) = Xj(ω
−1
j ϕj), where Xj is a hyperbolic

periodic orbit of Fj . It follows that

(∂ωe0)j(ϕ) =
d

ds

∣∣∣∣
s=0

(e0)j(ϕ+ sω) =
d

ds

∣∣∣∣
s=0

Xj(ω
−1
j (ϕj + sωj))

= Ẋj(ω
−1
j ϕj) = Fj(Xj(ω

−1
j ϕj)) = (F0)j((e0(ϕ)) ,

because Ẋj(t) = Fj(Xj(t)) for all t ∈ R.

Lemma 2.1 implies that e0 sends integral curves of the constant vector field ω on
(R/2πZ)m to integral curves of the vector field F0 given in (1.2). Because the
integral curves of the ODEs ϕ̇ = ω on (R/2πZ)m are clearly either periodic or
quasi-periodic, we call T0 = e0((R/2πZ)m) an embedded (quasi-)periodic torus.

At this point we temporarily abandon the setting of coupled oscillators and
consider a general ODE ẋ = F0(x) defined by a smooth vector field F0 : RM →
RM . That is, we do not assume that this ODE decouples into mutually indepen-
dent ODEs. However, we will assume throughout this paper that F0 possesses a
normally hyperbolic periodic or quasi-periodic invariant torus T0 which admits
an embedding e0 : (R/2πZ)m → RM that semi-conjugates the constant vector
field ω on (R/2πZ)m to F0. In other words, we assume that e0 and F0 satisfy

∂ωe0 = F0 ◦ e0 , (2.2)

just as in Lemma 2.1. We return to coupled oscillator systems in section 5.
We now study any smooth perturbation of F0 of the form

F = F(x) = F0(x) + εF1(x) + ε2 F2(x) + . . . : RM → RM .

Fénichel’s theorem [8, 30] guarantees that, for 0 ≤ ε ≪ 1, the perturbed ODE
ẋ = F(x) admits an invariant torus Tε close to T0, that depends smoothly on ε.
Our strategy to find Tε will be to search for an embedding e : (R/2πZ)m → RM

close to e0, and a reduced vector field f : (R/2πZ)m → Rm close to ω satisfying
the conjugacy equation

C(e, f) := e′ · f − F ◦ e = 0 . (2.3)

Any solution (e, f) to (2.3) indeed yields an embedded F-invariant torus Tε :=
e((R/2πZ)m) ⊂ RM , as we see from (2.3) that at any point x = e(ϕ) ∈ Tε

the vector F(x) lies in the image of the derivative e′(ϕ), and is thus tangent to
Tε. Moreover, e semi-conjugates f to F, that is, f is the restriction of F to Tε

represented in (or “pulled back to”) the local coordinate chart (R/2πZ)m.
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As explained in the introduction, we try to find solutions to (2.3) by making
a series expansion ansatz

e = e0 + εe1 + ε2e2 + . . . and f = ω + εf1 + ε2f2 + . . .

for e1, e2, . . . : (R/2πZ)m → RM and f1, f2, . . . : (R/2πZ)m → Rm. Substitution
of this ansatz in (2.3), and Taylor expansion to ε, yields the following list of
recursive equations for the ej and fj :

(∂ω − F′
0 ◦ e0) · e1 + e′0 · f1 = F1 ◦ e0 =: G1

(∂ω − F′
0 ◦ e0) · e2 + e′0 · f2 = F2 ◦ e0 + (F′

1 ◦ e0) · e1
+ 1

2 (F
′′
0 ◦ e0)(e1, e1)− e′1 · f1 =: G2

...
...

...
(∂ω − F′

0 ◦ e0) · ej + e′0 · fj = . . . =: Gj

...
...

...

(2.4)

Here, each Gj : (R/2πZ)m → RM is an “inhomogeneous term” that can iter-
atively be determined and depends on F1, . . . ,Fj , f1, . . . , fj−1 and e1, . . . , ej−1.
Concretely, Gj is given by

Gj :=
1

j!

dj

dεj

∣∣∣∣
ε=0

(F0 + εF1 + . . .+ εjFj)(e0 + εe1 + . . .+ εj−1ej−1)
−(e0 + εe1 . . .+ εj−1ej−1)

′ · (ω + εf1 + . . .+ εj−1fj−1)
. (2.5)

Explicit formulas for G1 and G2 are given in (2.4). Note that equations (2.4)
are all of the form

c(ej , fj) = Gj for j = 1, 2, . . . , (2.6)

in which

c(ej , fj) := (∂ω − F′
0 ◦ e0) · ej + e′0 · fj (2.7)

is the linearisation of the operator C defined in (2.3) at the point (e, f) = (e0, ω),
where ε = 0. This linearisation c is not invertible, but we will see that c is
surjective under the assumption that T0 is reducible. This implies that equations
(2.4) can iteratively be solved.

Remark 1. We think of C and c as operators between function spaces. For exam-
ple, for F0 ∈ Cr+1(RM ,RM ),F ∈ Cr(RM ,RM ), and e0 ∈ Cr+1((R/2πZ)m,RM ),

C, c : Cr+1((R/2πZ)m,RM )× Cr((R/2πZ)m,Rm) → Cr((R/2πZ)m,RM ) .

Remark 2. The solutions to equation (2.3) are not unique because an invariant
torus can be embedded in many different ways. In fact, if e : (R/2πZ)m → RM

is an embedding of Tε and Ψ : (R/2πZ)m → (R/2πZ)m is any diffeomorphism
of the standard torus, then also e ◦ Ψ is an embedding of Tε. The operator
C defined in (2.3) is thus equivariant under the group of diffeomorphisms of
(R/2πZ)m. As a consequence, solutions of (2.6) are not unique either.
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Remark 3. For the interested reader we provide additional details on Remark 2.
Let us denote by Ψ∗f the pullback of the vector field f by Ψ defined by the
formula (Ψ∗f)(ϕ) := (Ψ′(ϕ))−1 · f(Ψ(ϕ)) for all ϕ ∈ (R/2πZ)m. We claim that

C(e ◦Ψ,Ψ∗f) = C(e, f) ◦Ψ . (2.8)

This follows from a straightforward calculation. Indeed,

C(e ◦Ψ,Ψ∗f)(ϕ) = e′(Ψ(ϕ)) ·Ψ′(ϕ) · (Ψ′(ϕ))−1 · f(Ψ(ϕ))− F((e ◦Ψ)(ϕ))

= e′(Ψ(ϕ)) · f(Ψ(ϕ))− (F ◦ e)(Ψ(ϕ)) = C(e, f)(Ψ(ϕ)) .

As we may view vector fields as infinitesimal diffeomorphisms, this allows us
to find many elements in the kernel of c. Namely, if X is any vector field on
(R/2πZ)m with corresponding flow φt, then

d

dt

∣∣∣∣
t=0

(e0 ◦ φt, φ
∗
tω) = (e′0 ·X, [X,ω]) ∈ ker c. (2.9)

Here [X,ω] = −X ′ · ω = −∂ωX denotes the Lie bracket between X and ω.
Formula (2.9) may also be verified directly. Differentiating the identity

C(e0, ω)(ϕ) = e′0(ϕ) · ω − (F0 ◦ e0)(ϕ) = 0 (2.10)

at any ϕ, in the direction of any vector u, we first of all find that

e′′0(ϕ)(ω, u)− (F′
0 ◦ e0)(ϕ) · e′0(ϕ) · u = 0 . (2.11)

From this we see that indeed

c(e′0 ·X, [X,ω]) = (∂ω − F′
0 ◦ e0) · e′0 ·X − e′0 · ∂ωX

= e′′0(ω,X) + e′0 · ∂ωX − (F′
0 ◦ e0) · e′0 ·X − e′0 · ∂ωX

= e′′0(ω,X)− (F′
0 ◦ e0) · e′0 ·X = 0 ,

where the last step follows from equation (2.11).

3 Reducibility and the fast fibre map

As was indicated in Remarks 2 and 3, the solutions to the iterative equations
c(ej , fj) = Gj are not unique. However, we show in section 4 that solutions can
be found if we assume that the unperturbed torus T0 is reducible. We define
this concept by means of a parametrisation of the linearised dynamics of F0

normal to T0. But we start with the observation that the linearised dynamics
tangent to T0 is trivial. Recall that if e0 : (R/2πZ)m → RM is an embedding of
T0 ⊂ RM , then the tangent map Te0 : (R/2πZ)m×Rm → RM ×RM defined by

Te0(ϕ, u) = (e0(ϕ), e
′
0(ϕ) · u) (3.1)

is an embedding as well. Its image is the tangent bundle TT0 ⊂ RM × RM .
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Lemma 3.1. Assume that the embedding e0 : (R/2πZ)m → RM semi-conjugates
the constant vector field ω ∈ Rm on (R/2πZ)m to the vector field F0 on RM .
Then Te0 sends solution curves of the system of ODEs

ϕ̇ = ω , u̇ = 0 on (R/2πZ)m × Rm

to integral curves of the tangent vector field TF0 on RM × RM defined by

TF0(x, v) := (F0(x),F
′
0(x) · v) . (3.2)

Proof. Our assumption simply means that ∂ωe0 = F0 ◦ e0. As we already
observed in (2.11), differentiation of this identity at a point ϕ ∈ (R/2πZ)m in
the direction of a vector u ∈ Rm yields that

e′′0(ϕ)(u, ω) = F′
0(e0(ϕ)) · e′0(ϕ) · u .

From this it follows that

(Te0)
′(ϕ, u) · (ω, 0) = d

ds

∣∣∣∣
s=0

Te0(ϕ+ sω, u)

=
d

ds

∣∣∣∣
s=0

(e0(ϕ+ sω), e′0(ϕ+ sω) · u)

= ((∂ωe0)(ϕ), e
′′
0(ϕ)(u, ω))

= (F0(e0(ϕ)),F
′
0(e0(ϕ)) · e′0(ϕ) · u) = TF0(Te0(ϕ, u)) .

In the last equality we used Definitions (3.1) and (3.2).

Lemma 3.1 shows that Te0 trivialises the linearised dynamics of F0 in the
direction tangent to T0. In what follows, we assume that something similar
happens in the direction normal to T0, that is, we assume that T0 is reducible.
We define this concept now.

Definition 3.2. Assume that the embedding e0 : (R/2πZ)m → RM semi-
conjugates the constant vector field ω ∈ Rm on (R/2πZ)m to the vector field F0

on RM . We say that the (quasi-)periodic invariant torus T0 = e0((R/2πZ)m) is
reducible if there is a map Ne0 : (R/2πZ)m×RM−m → RM×RM of the form

Ne0(ϕ, u) := (e0(ϕ), N(ϕ) · u) , (3.3)

for a smooth family of linear maps

N : (R/2πZ)m → L(RM−m,RM ) ,

with the following two properties:

i) Ne0 is transverse to Te0. By this we mean that

RM = im e′0(ϕ)⊕ imN(ϕ) for every ϕ ∈ (R/2πZ)m . (3.4)

In particular, every N(ϕ) is injective.
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ii) There is a linear map L : RM−m → RM−m such that Ne0 sends solution
curves of the system of ODEs

ϕ̇ = ω , u̇ = L · u defined on (R/2πZ)m × RM−m

to integral curves of the tangent vector field TF0 on RM × RM .

When T0 is reducible, the matrix L is called a Floquet matrix for T0, and its
eigenvalues the Floquet exponents of T0.

If L is hyperbolic (no Floquet exponents lie on the imaginary axis) then T0

is normally hyperbolic, and we call Ne0 a fast fibre map for T0. Its image

NT0 := Ne0((R/2πZ)m × RM−m) ⊂ RM × RM

is then called the fast fibre bundle of T0.

We note that the map Ne0 appearing in Definition 3.2 is an embedding because
e0 is an embedding and the linear maps N(ϕ) are all injective. Therefore its
image NT0 is a smooth M -dimensional manifold. Condition i) ensures that
NT0 is in fact a normal bundle for T0.

We finish this section with an alternative characterisation of property ii) in
Definition 3.2.

Lemma 3.3. Assume that the embedding e0 : (R/2πZ)m → RM semi-conjugates
the constant vector field ω to the vector field F0. Let L : RM−m → RM−m be
a linear map, and let Ne0 be a map of the form (3.3) for a smooth family of
linear maps N : (R/2πZ)m → L(RM−m,RM ). The following are equivalent:

i) Ne0 sends solution curves of the system of ODEs

ϕ̇ = ω , u̇ = L · u defined on (R/2πZ)m × RM−m

to integral curves of the tangent vector field TF0 on RM × RM ;

ii) N = N(ϕ) satisfies the partial differential equation

∂ωN +N ·L = (F′
0 ◦ e0)·N on (R/2πZ)m . (3.5)

Proof. It holds that

(Ne0)
′(ϕ, u) · (ω,L · u) = d

ds

∣∣∣∣
s=0

(e0(ϕ+ sω), N(ϕ+ sω) · (u+ sL · u))

= ((∂ωe0)(ϕ), ∂ωN(ϕ) · u+N(ϕ) · L · u) .

At the same time,

TF0(Ne0(ϕ, u)) = (F0(e0(ϕ)),F
′
0(e0(ϕ)) ·N(ϕ) · u) .

It holds that ∂ωe0 = F0 ◦ e0 by assumption, so the first components of these
two expressions are equal. The conclusion of the lemma therefore follows from
comparing the second components.
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Remark 4. Reducibility of a (quasi-)periodic invariant torus of an arbitrary
vector field F0 can only be quaranteed under strong conditions, e.g., that F0

is Hamiltonian [7], or that the frequency vector ω satisfies certain Diophantine
inequalities [14]. We do not assume such conditions here. Even the question
whether reducibility is preserved under perturbation is subtle [15].

However, hyperbolic periodic orbits (which are one-dimensional normally
hyperbolic invariant tori) are always reducible (at least if we allow the matrix L
to be complex, see Section 5). This relatively well-known fact is a consequence
of Floquet’s theorem [9], as we show in Theorem 5.1. The (quasi-)periodic
torus occurring in an uncoupled oscillator system such as (1.1) is a product of
hyperbolic periodic orbits, and is therefore reducible as well, see Lemma 5.3.

4 Solving the iterative equations

We now return to solving the iterative equations (2.4), assuming from here on
out that T0 is an embedded (quasi-)periodic reducible and normally hyperbolic
invariant torus for F0. The main result of this section can be summarised (at
this point still somewhat imprecisely) as follows.

Theorem 4.1. Assume that T0 = e0((R/2πZ)m) ⊂ RM is a smooth embedded
(quasi-)periodic reducible normally hyperbolic invariant torus for F0. Then

i) there are smooth solutions (ej , fj) to the iterative equations c(ej , fj) = Gj

for every j ∈ N, for which we provide explicit formulas in this section;

ii) the component of each ej tangential to T0 can be chosen freely, but ev-
ery such choice for e1, . . . , ej−1 uniquely determines the component of ej
normal to T0 (see Theorem 4.4);

iii) the tangential component of ej can be chosen in such a way that fj is in
“normal form” to arbitrarily high order in its Fourier expansion. We say
that fj is in normal form if it is a sum of “resonant terms” only (see
Corollary 4.6).

The precise meaning of the statements in this theorem will be made clear below.
Theorem 4.1 follows directly from the results presented in this section.

To prove the theorem, recall that (because T0 is reducible) we have at our
disposal a fast fibre map Ne0 for T0, defined by a family of injective matrices
N = N(ϕ) that satisfies RM = im e′0(ϕ) ⊕ imN(ϕ) for every ϕ ∈ (R/2πZ)m.
This enables us to make the ansatz

ej(ϕ)︸ ︷︷ ︸
∈

RM

= e′0(ϕ)︸ ︷︷ ︸
∈

L(Rm,RM )

· gj(ϕ)︸ ︷︷ ︸
∈
Rm

+ N(ϕ)︸ ︷︷ ︸
∈

L(RM−m,RM )

· hj(ϕ)︸ ︷︷ ︸
∈

RM−m

, (4.1)

for (unknown) smooth functions gj : (R/2πZ)m → Rm and hj : (R/2πZ)m →
RM−m. This ansatz decomposes ej into components in the direction of the
tangent bundle Te0 and the fast fibre bundle Ne0.
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Lemma 4.2. The ansatz (4.1) transforms equation (2.6) into

c(ej , fj) = e′0 · (∂ωgj + fj) +N · (∂ω − L)(hj) = Gj . (4.2)

Proof. We use our definitions, and results derived above, to compute:

Gj = c(ej , fj) = (∂ω − F′
0 ◦ e0) · ej + e′0 · fj

= (∂ω − F′
0 ◦ e0) · (e′0 · gj +N · hj) + e′0 · fj

= e′′0(gj , ω) + e′0 · ∂ωgj + ∂ωN · hj +N · ∂ωhj

− (F′
0. ◦ e0) · e′0 · gj − (F0

′ ◦ e0) ·N · hj + e′0 · fj
= e′′0(gj , ω)− (F′

0. ◦ e0) · e′0 · gj︸ ︷︷ ︸
=0

+e′0 · ∂ωgj + e′0 · fj

+N · ∂ωhj + ∂ωN · hj − (F0
′ ◦ e0) ·N · hj︸ ︷︷ ︸

=−N ·L·hj

= e′0 · (∂ωgj + fj) +N · (∂ω − L) · hj .

We clarify these equalities below:

1. The first equality is (2.6);

2. In the second equality, we used (2.7);

3. The third equality is our ansatz (4.1);

4. The fourth equality follows from the product rule (applied twice);

5. In the fifth equality, the terms in the sum were re-ordered;

6. The final equality follows from (2.11) and (3.5).

This proves the lemma.

Lemma 4.2 allows us to solve equation (4.2) by splitting it into a component
along the tangent bundle TT0 and a component along the fast fibre bundle NT0

of T0. In what follows we denote by

π : (R/2πZ)m → L(RM ,RM )

the family of projections onto the tangent bundle along the fast fibre bundle.
That is, each π(ϕ) : RM → RM is the unique projection that satisfies

π(ϕ) · e′0(ϕ) = e′0(ϕ) and π(ϕ) ·N(ϕ) = 0 .

Proposition 4.7 below provides an explicit formula for π(ϕ). It is clear from this
formula that π depends smoothly on the base point ϕ ∈ (R/2πZ)m.

Applying π and 1− π to (4.2) produces, respectively,

e′0 · (∂ωgj + fj) = π ·Gj ,

N · (∂ω − L)(hj) = (1− π) ·Gj .

11



Because e′0(ϕ) and N(ϕ) are injective, these equations are equivalent to

∂ωgj + fj = (e′0)
+ · π ·Gj =: Uj ,

(∂ω − L)(hj) = N+ · (1− π) ·Gj =: Vj .
(4.3)

Here, A+ := (ATA)−1AT denotes the Moore-Penrose pseudo-inverse, which
is well-defined for an injective linear map A. Clearly, (e′0)

+ and N+ depend
smoothly on ϕ ∈ (R/2πZ)m. We give these equations a special name.

Definition 4.3. We call the first equation in (4.3),

∂ωgj + fj = Uj , (4.4)

the j-th tangential homological equation. The second equation in (4.3),

(∂ω − L)(hj) = Vj , (4.5)

is called the j-th normal homological equation.

Remark 5. To recap, we note that (4.4) and (4.5) are inhomogeneous linear
equations for the three unknown smooth functions fj ,gj ,hj and with the in-
homogeneous right hand sides Uj , Vj . The domains and co-domains of these
functions are given by

fj ,gj , Uj : (R/2πZ)m → Rm and hj , Vj : (R/2πZ)m → RM−m .

The following theorem shows how the homological equations can be solved.
Explicit expressions for the Fourier series of the solutions are given in formulas
(4.6) and (4.9), that appear in the proof of the theorem.

Theorem 4.4. For any smooth functions gj , Uj : (R/2πZ)m → Rm and Vj :
(R/2πZ)m → RM−m, there are unique smooth functions fj : (R/2πZ)m → Rm

and hj : (R/2πZ)m → RM−m that solve (4.4) and (4.5).

Proof. The tangential homological equation (4.4) can be rewritten as

fj = Uj − ∂ωgj .

This shows that for any smooth gj and Uj there exists a unique solution fj .
However, in view of Corollary 4.6 below, we would also like a formula for the
solution of the tangential homological equation in the form of a Fourier series.
To this end, we expand Uj and gj in Fourier series as

Uj(ϕ) =
∑
k∈Zm

Uj,ke
i⟨k,ϕ⟩ and gj(ϕ) =

∑
k∈Zm

gj,ke
i⟨k,ϕ⟩ .

We use the notation
⟨k, ϕ⟩ := k1ϕ1 + . . .+ kmϕm

for what is often called the k-th combination angle. Note that the Fourier
coefficients Uj,k, gj,k ∈ Cm are complex vectors satisfying Uj,−k = U j,k and
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gj,−k = gj,k, because Uj and gj are real-valued. We similarly expand fj in a
Fourier series by making the solution ansatz

fj(ϕ) =
∑
k∈Zm

fj,ke
i⟨k,ϕ⟩,

with fj,k ∈ Cm. In terms of these Fourier series, equation (4.4) becomes∑
k∈Zm

(i⟨ω, k⟩gj,k + fj,k)e
i⟨k,ϕ⟩ =

∑
k∈Zm

Uj,ke
i⟨k,ϕ⟩ ,

or, equivalently,

i⟨ω, k⟩gj,k + fj,k = Uj,k for all k ∈ Zm .

This shows that for any choice of Fourier coefficients Uj,k for Uj and gj,k for
gj there are unique Fourier coefficients fj,k for the solution fj to the tangential
homological equation. These coefficients are given by

fj,k = Uj,k − i⟨ω, k⟩gj,k for all k ∈ Zm . (4.6)

It is clear from this equation that fj,−k = f j,k so that fj is real-valued.
We proceed to solve the normal homological equation (4.5). We again use

Fourier series, and thus we expand hj and Vj as

hj(ϕ) =
∑
k∈Zm

hj,ke
i⟨k,ϕ⟩ and Vj(ϕ) =

∑
k∈Zm

Vj,ke
i⟨k,ϕ⟩ , (4.7)

for hj,k, Vj,k ∈ CM−m satisfying Vj,−k = V j,k. Substitution of (4.7) into (4.5)
produces ∑

k∈Zm

(i⟨ω, k⟩ − L)hj,ke
i⟨k,ϕ⟩ =

∑
k∈Zm

Vj,ke
i⟨k,ϕ⟩ ,

so that we obtain the equations

(i⟨ω, k⟩ − L)hj,k = Vj,k for all k ∈ Zm . (4.8)

Because L has no eigenvalues on the imaginary axis, the matrix i⟨ω, k⟩ − L is
invertible. Each of the equations in (4.8) therefore possesses a unique solution,
which is given by

hj,k = (i⟨ω, k⟩ − L)−1Vj,k . (4.9)

Because the matrix L is real, it follows that hj,−k = hj,k. This proves the
theorem.

Remark 6. Formulas (4.6) and (4.9) allow us to estimate the smoothness of the
solutions fj and hj to equations (4.4), (4.5) in terms of the smoothness of gj , Uj

and Vj . To see this, let A : (R/2πZ)m → Cp be a function with Fourier series

A(ϕ) =
∑
k∈Zm

Ake
i⟨k,ϕ⟩ .
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For k ∈ Zm, define |k| :=
(
|k1|2 + . . .+ |km|2

) 1
2 , and let W|k| ∈ R>0 be

weights satisfying W|k| → ∞ as |k| → ∞. When || · || is any norm on Cp, then

||A||W :=

(∑
k∈Zm

||Ak||2W 2
|k|

) 1
2

defines a norm of A that measures the growth of its Fourier coefficients. For
example, when W|k| = (1+ |k|2)s/2 for some s > 0, then it is a Sobolev norm. It
follows directly from (4.6) that ||fj ||W ≤ ||Uj ||W + ||∂ωgj ||W , which shows that
fj is at least as smooth as Uj and ∂ωgj .

To find a similar bound for ||hj ||W , note that the hyperbolicity of L implies
that the function λ 7→ ||(iλ−L)−1||op on R, that assigns to λ the operator norm
of (iλ − L)−1, is well-defined, and therefore also continuous. It converges to 0
as λ → ±∞. Hence it is uniformly bounded in λ. In particular,

||(i⟨k, ω⟩ − L)−1||op ≤ CL := max
λ∈R

||(iλ− L)−1||op .

It thus follows from (4.9) that

||hj ||W ≤ CL||Vj ||W .

This means that hj is at least as smooth as Vj .

Theorem 4.4 shows that one can choose gj (and thus the component of ej
tangent to T0) freely when solving the homological equations (4.4) and (4.5).
This reflects the fact that the embedding of Tε is not unique. Corollary 4.6
below states that it is possible to choose gj in such a way that fj is in “normal
form”. We first define this concept.

Definition 4.5. Let

f = ω + εf1 + ε2f2 + . . . : (R/2πZ)m → Rm

be an asymptotic expansion of a vector field on (R/2πZ)m. Assume that the
Fourier series of fj is given by

fj(ϕ) =
∑
k∈Zm

fj,ke
i⟨k,ϕ⟩ for certain fj,k ∈ Cm .

For k ∈ Zm, denote |k| =
(
|k1|2 + . . .+ |km|2

) 1
2 as before. We say that fj is in

normal form to order K ∈ N ∪ {∞} in its Fourier expansion if

fj,k = 0 for all k ∈ Zm with ⟨ω, k⟩ ≠ 0 and |k| ≤ K .

Remark 7. We remark that fj is in normal form to order K in its Fourier
expansion, if and only if its truncated Fourier series

fKj (ϕ) :=
∑

|k|≤K

fj,ke
i⟨k,ϕ⟩

depends only on so-called resonant combination angles. A combination angle
⟨k, ϕ⟩ is called resonant when ⟨k, ω⟩ = 0.
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The following result shows that we can arrange for the reduced phase vector
field to be in normal form to arbitrarily high-order in its Fourier expansion.

Corollary 4.6. For any (finite) K ∈ N the function gj can be chosen in such
a way that the solution fj to the tangential homological equation

∂ωgj + fj = Uj

is in normal form to order K in its Fourier expansion.

Proof. Recall that the tangential homological equation reduces to the equations

i⟨ω, k⟩gj,k + fj,k = Uj,k (4.10)

for the Fourier coefficients of fj , gj and Uj—see (4.6). Given K ∈ N, choose

gj,k =
Uj,k

i⟨k,ω⟩ when ⟨k, ω⟩ ≠ 0 and |k| ≤ K,

gj,k = 0 when ⟨k, ω⟩ = 0 or |k| > K.
(4.11)

The (unique) solutions to (4.10) are then given by

fj,k = 0 when ⟨k, ω⟩ ≠ 0 and |k| ≤ K,
fj,k = Uj,k when ⟨k, ω⟩ = 0 or |k| > K.

(4.12)

With these choices, gj is a smooth function, as its Fourier expansion is finite.
It is also clear that fj is in normal form to order K in its Fourier expansion.

Remark 8. Recall that the flow of the ODE ϕ̇ = ω on (R/2πZ)m is periodic or
quasi-periodic and given by the formula ϕ 7→ ϕ + ωt mod (2πZ)m. It follows
that the time-average over this (quasi-)periodic flow, of a complex exponential
vector field fke

i⟨k,ϕ⟩ (with fk ∈ Cm) is given by

lim
T→∞

1

T

∫ T

0

fke
i⟨k,ϕ+ωt⟩ dt =

{
fke

i⟨k,ϕ⟩ when ⟨k, ω⟩ = 0 ,
0 when ⟨k, ω⟩ ≠ 0 .

This shows that fke
i⟨k,ϕ⟩ is resonant (that is: it depends on a resonant combi-

nation angle) precisely when it is equal to its average over the (quasi-)periodic
flow, whereas fke

i⟨k,ϕ⟩ is nonresonant precisely when this average is zero. For
an arbitrary (and sufficiently regular) Fourier series it follows that

lim
T→∞

1

T

∫ T

0

(∑
k∈Zm

fk e
i⟨k,ϕ+ωt⟩

)
dt =

∑
k ∈ Zm

⟨ω, k⟩ = 0

fk e
i⟨k,ϕ⟩ .

We conclude that averaging a Fourier series removes its nonresonant terms,
while keeping its resonant terms untouched. Corollary 4.6 shows that it can
be arranged that the term fj in the reduced vector field f is a sum of resonant
terms only (to arbitrarily high order). We may thus loosely interpret Corollary
4.6 as a high-order averaging theorem, see [28].
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Remark 9. We include the following result for completeness. Applied to A =
e′0(ϕ) and B = N(ϕ) it gives a formula for the projection π(ϕ) onto the tangent
space to T0 at e0(ϕ) along the fast fibre at that point. This formula is not only
useful for practical computations, but also shows explicitly that π(ϕ) depends
smoothly on ϕ. A proof of Proposition 4.7 is given in [19].

Proposition 4.7. Let 1 ≤ m ≤ M and assume that A ∈ L(Rm,RM ) and
B ∈ L(RM−m,RM ) are linear maps satisfying RM = imA ⊕ imB. We denote
by π ∈ L(RM ,RM ) the “oblique projection” onto the image of A along the image
of B, i.e., π is the unique linear map satisfying πA = A and πB = 0. Then π
is given by the formula

π = A(ATπ(B)⊥A)−1ATπ(B)⊥ in which π(B)⊥ := (1−B(BTB)−1BT ) .

The T denotes matrix transpose. All the inverses in this formula exist. Note
that π(B)⊥ is the orthogonal projection onto kerBT along imB.

5 Reducibility for oscillator systems

In this section we show that the invariant torus of a system of uncoupled oscilla-
tors (see the introduction) is reducible. We also give a formula for the fast fibre
map for such a torus. The results in this section are a consequence of Floquet’s
theorem, which implies that the invariant circle defined by a single hyperbolic
periodic solution of an ODE is reducible. The results in this section should thus
be considered well-known, but for completeness we include them in detail. We
start with the result for single hyperbolic periodic orbits.

Theorem 5.1. Let X : R → RM be a hyperbolic T -periodic orbit of a smooth
vector field F : RM → RM . Then the invariant circle T0 = X(R) ⊂ RM is
reducible and normally hyperbolic. Its fast fibre map is given by formula (5.1).

Proof. Assume that the ODE ẋ = F(x) on RM possesses a hyperbolic periodic
orbit X = X(t) with minimal period T > 0. We think of it as an invariant circle
T0 embedded by the map e0 : R/2πZ → RM defined by e0(ϕ) := X(ω−1ϕ),
where ω := 2π

T . Let Φ = Φ(t) ∈ GL(RM ) be the principal fundamental matrix
solution of the linearisation around this periodic orbit. This means that

Φ̇(t) = F′(X(t)) · Φ(t) and Φ(0) = IdRM .

Floquet’s theorem [9, 29] states that Φ(t) admits a factorisation

Φ(t) = P (t)eBt with P (t+ T ) = P (t) and P (0) = IdRM .

The constant (and perhaps complex) Floquet matrix B satisfies eBT = Φ(T ),
for example B = 1

T log Φ(T ) for a choice of matrix logarithm. Note that a
matrix logarithm of Φ(T ) exists because Φ(T ) is invertible. We shall assume
here that B is a real matrix. This can always be arranged by replacing T by 2T
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and considering a double cover of T0 if necessary, but we ignore this (somewhat
annoying) subtlety here.

Substituting the Floquet decomposition in the definition of the fundamental
matrix solution, we obtain that Ṗ (t)eBt + P (t)BeBt = F′(X(t))P (t)eBt. Thus,

Ṗ (t) + P (t)B = F′(X(t))P (t) .

This implies that we found a solution to Equation (3.5) in Lemma 3.3. Indeed,
if we define

L̃ = B and Ñ(ϕ) = P (ω−1ϕ) ,

then we have, recalling that e0(ϕ) = X(ω−1ϕ)),

∂ωÑ(ϕ) + Ñ(ϕ) · L̃ = Ñ ′(ϕ) · ω + Ñ(ϕ) · L̃
= Ṗ (ω−1ϕ) + P (ω−1ϕ) ·B
= F′(X(ω−1ϕ)) · P (ω−1ϕ) = F′(e0(ϕ)) · Ñ(ϕ) .

However, this does not yet prove that the periodic orbit is reducible, because
Ñ = Ñ(ϕ) defines a family of M ×M -matrices, and hence the image of Ñ(ϕ) is
not normal to the tangent vector ωe′0(ϕ) = Ẋ(ω−1ϕ) to the periodic orbit. To
resolve this issue, recall that Φ(T ) always has a unit eigenvalue. This follows
from differentiating the identity Ẋ(t) = F(X(t)) to t, which gives that d

dtẊ(t) =

F′(X(t)) · Ẋ(t), so that

Ẋ(0) = Ẋ(T ) = Φ(T ) · Ẋ(0) .

Because Φ(T ) = eBT , we conclude that B has a purely imaginary eigenvalue
in 2πi

T Z. Our assumption that X is hyperbolic implies that none of the other
eigenvalues of B lie on the imaginary axis. Because B is real and its eigenval-
ues must thus come in complex conjugate pairs, we conclude that the purely
imaginary eigenvalue of B must in fact be zero.

We now choose an injective linear map A : RM−1 → RM whose image
coincides with the (M − 1)-dimensional image of B. For any such choice of A
there is a unique map L : RM−1 → RM−1 for which

A · L = B ·A .

Clearly, the eigenvalues of L are the nonzero eigenvalues of B, showing that L
is hyperbolic. We also define N : R/2πZ → L(RM−1,RM ) by

N(ϕ) := P (ω−1ϕ)A . (5.1)

By definition, imN(0) = imA = imB is transverse to the tangent vector Ẋ(0) ∈
kerB to the periodic orbit. Because each P (t) is invertible, this transversality
persists along the entire orbit. Indeed, writing t = ω−1ϕ, note that

Ẋ(t) = Φ(t)Ẋ(0) = P (t)eBtẊ(0) = P (t)Ẋ(0) ∈ P (t)(kerB)
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is transversal to imN(ϕ) = im(P (t)A) = P (t)(imB). Finally, we compute

∂ωN(ϕ) +N(ϕ)L = N ′(ϕ)ω +N(ϕ)L

= Ṗ (ω−1ϕ)A+ P (ω−1ϕ)AL

= Ṗ (ω−1ϕ)A+ P (ω−1ϕ)BA

= F′(X(ω−1ϕ))P (ω−1ϕ)A = F′(e0(ϕ))N(ϕ) .

This proves that the invariant circle T0 defined by X(t) is reducible.

Example 5.2. As an example consider a single Stuart-Landau oscillator

ż = (α+ iβ) z + (γ + iδ) |z|2z for z ∈ C ∼= R2 . (5.2)

Here α, β, γ, δ ∈ R are parameters. We assume that αγ < 0 and αδ − βγ ̸= 0,
so that (5.2) possesses a unique (up to rotation) circular periodic orbit

X(t) = Reiωt where R :=
√
−α/γ and ω := β − αδ/γ ̸= 0 .

Thus, the embedding

e0 : R/2πZ ∋ ϕ 7→ z := Reiϕ ∈ C

sends solutions of ϕ̇ = ω on R/2πZ to solutions of (5.2). The Floquet decom-
position of the fundamental matrix solution around this periodic orbit can be
found by anticipating that P (t) = eiωt and thus making the ansatz

Φ(t) = eiωteBt

for an unknown linear map B : C → C. With this in mind we expand solutions
to (5.2) nearby the periodic orbit as

z(t) = Reiωt + ε eiωtv(t) .

To first order in ε this gives the linear differential equations

v̇ = v̇1 + iv̇2 = 2R2(γ + iδ)v1 ,

which shows that the Floquet map B : C → C must be given by

B(v1 + iv2) = 2R2(γ + iδ)v1 .

This B has an eigenvalue 0 (with eigenvector i corresponding to the tangent
space to the invariant circle) and an eigenvalue 2γR2 = −2α ̸= 0 (with eigen-
vector γ + iδ). We conclude that the map

Ne0 : (ϕ, u) 7→ (Reiϕ, eiϕ(γ + iδ)u) from R/2πZ× R to C× C

sends solutions of

ϕ̇ = ω , u̇ = −2αu for ϕ ∈ R/2πZ and u ∈ R
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to solutions of the linearised dynamics of (5.2) on C × C around the invariant
circle. In particular, we have L = −2α and N(ϕ) = eiϕ(γ + iδ). The projection
onto the tangent bundle of the invariant circle along its fast fibre bundle is given
by the formulas

π(0) · (x+ iy) = i(y − (δ/γ)x) and π(ϕ) = eiϕ · π(0) · e−iϕ .

Indeed, it is easy to check that π(ϕ) · ieiϕ = ieiϕ and π(ϕ) · eiϕ(γ + iδ) = 0.

We now extend the result of Theorem 5.1 to systems of multiple uncoupled
oscillators, that is, systems of the form

ẋ1 = F1(x1) , . . . , ẋm = Fm(xm) with xj ∈ RMj ,

that each have a hyperbolic Tj-periodic orbit Xj(t). Recall that the product
of these periodic orbits forms an invariant torus. The fact that this torus is
reducible follows from the following lemma. Its proof is straightforward, but
included here for completeness.

Lemma 5.3. Let T1 ⊂ RM1 and T2 ⊂ RM2 be embedded reducible normally
hyperbolic (quasi-)periodic invariant tori for the vector fields F1 and F2 respec-
tively. Then the product torus T0 := T1 × T2 ⊂ RM (with M := M1 +M2) is
an embedded reducible normally hyperbolic quasi-periodic invariant torus for the
product vector field F0 on RM defined by F0(x1, x2) := (F1(x1),F2(x2)).

Proof. Assume that ej : (R/2πZ)mj → RMj (for j = 1, 2) is an embedding of
a reducible normally hyperbolic (quasi-)periodic invariant torus for the vector
field Fj . This means that there are frequency vectors ωj ∈ Rmj such that
∂ωj

ej = Fj ◦ ej and fast fibre maps Nej : (R/2πZ)mj ×RMj−mj → RMj ×RMj

of the form Nej(ϕj , uj) = (ej(ϕj), Nj(ϕj) · uj) satisfying ∂ωj
Nj + Nj · Lj =

(F′
j ◦ ej) ·Nj for certain hyperbolic Floquet matrices Lj .
If we now define m := m1 +m2, ω := (ω1, ω2) ∈ Rm and e0 : (R/2πZ)m →

RM by e0(ϕ) = e0(ϕ1, ϕ2) := (e1(ϕ1), e2(ϕ2)), then e0 is clearly an embedding
of T0 and the equality ∂ωe0 = F0 ◦ e0 holds. In other words, the product torus
T0 is an embedded quasi-periodic invariant torus for F0.

If we also define N(ϕ) · u = N(ϕ1, ϕ2) · (u1, u2) := (N1(ϕ1) · u1, N2(ϕ2) · u2),
then clearly N(ϕ) is injective, and therefore Ne0 : (R/2πZ)m → RM × RM

defined by

Ne0((ϕ1, ϕ2), (u1, u2)) = (e0(ϕ1, ϕ2), N(ϕ1, ϕ2) · (u1, u2))

is a fast fibre map for T0 that satisfies ∂ωN + N · L = (F′
0 ◦ e0) · N . Here L :

RM−m → RM−m is defined by L(u1, u2) := (L1u1, L2u2). This L is hyperbolic,
its eigenvalues being those of L1 and L2. This proves that T0 is reducible and
normally hyperbolic and concludes the proof of the lemma.
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6 Application to remote synchronisation

In this final section we apply and illustrate our phase reduction method in a
small network of three weakly linearly coupled Stuart-Landau oscillators

ż1 = (α+ iβ)z1 + (γ + iδ)|z1|2z1 + εz2 ,
ż2 = (a + ib)z2 + (c+ id)|z2|2z2 + εz1 ,
ż3 = (α+ iβ)z3 + (γ + iδ)|z3|2z3 + εz2 ,

(6.1)

with z1, z2, z3 ∈ C. Figure 1 depicts the coupling architecture of this network.
Note that the first and third oscillator in equations (6.1) are identical. We
choose parameters so that each uncoupled oscillator has a nonzero hyperbolic
periodic orbit, with frequencies ω1 = ω3 ̸= ω2. These periodic orbits form a
3-dimensional invariant torus T0 for the uncoupled system, which persists as a
perturbed torus Tε for small nonzero coupling.

Despite that fact that the first and third oscillators in (6.1) are not cou-
pled directly, a numerical study of equations (6.1) reveals that these oscillators
synchronise when appropriate parameter values are chosen, see Figure 2. This
“remote synchronisation” appears to be mediated by the second oscillator, which
allows the two other oscillators to communicate. Figure 3 demonstrates, again
numerically, that the timescale of remote synchronisation is of the order t ∼ ε−2.
This suggests that proving the synchronisation rigorously would require second-
order phase reduction.

In [3], remote synchronisation of Stuart-Landau oscillators was observed
numerically for the first time. A first rigorous proof of the phenomenon, for a
chain of three Stuart-Landau oscillators, occurs in [16]. The proof in that paper
employs the high-order phase reduction method developed in [10]. However, the
method in [10] does not yield the reduced phase equations in normal form. As
a result, the timescale t ∼ ε−2 is not observed in [16].

Here we apply the parametrisation method developed in this paper, to prove
that the first and third oscillator in (6.1) synchronise over a timescale t ∼
ε−2. We are also able to determine how the parameters in (6.1) influence this
synchronisation. To this end, we will compute an asymptotic expansion of an
embedding e : (R/2πZ)3 → C3 and a reduced phase vector field f : (R/2πZ)3 →
R3 to second order in the small parameter. As we are primarily interested in
the synchronisation of the first and third oscillator, we do not calculate the full
reduced phase vector field. Instead, we only explicitly compute an evolution
equation for the resonant combination angle Φ := ϕ1 − ϕ3. We will show that

Φ̇ = ε2 (−A sinΦ +B(1− cosΦ)) +O(ε3) , (6.2)

in which the constants A and B are given by the formulas

A = 1
4a2+(ω1−ω2)2

(
δ
γ (ω2 − ω1) + a

(
1 + dδ

cγ

)
+ 2a2

(
d
c + δ

γ

)
1

ω2−ω1

)
,

B = 1
4a2+(ω1−ω2)2

(
(ω2 − ω1) + a

(
d
c − δ

γ

)
+ 2a2

(
1− dδ

cγ

)
1

ω2−ω1

)
.

(6.3)
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Figure 1: Representation of the network of Stuart-Landau oscillators (6.1).

Before we prove formulas (6.2) and (6.3), let us investigate their dynamical
implications. After rescaling time t 7→ τ := ε2t, equation (6.2) becomes

dΦ

dτ
= (−A sinΦ +B(1− cosΦ)) +O(ε) .

For ε = 0 the time-rescaled reduced flow on (R/2πZ)3 therefore admits a 2-
dimensional invariant torus

S = {ϕ1 = ϕ3} ⊂ (R/2πZ)3

on which the phases of the first and third oscillator are synchronised. This torus
is stable when A > 0 and unstable when A < 0. For A ̸= 0, there also exists
exactly one 2-dimensional invariant torus of the form

P = {ϕ1 = ϕ3 + c} ⊂ (R/2πZ)3 for some c ̸= 0

with the opposite stability type. The phases of the first and third oscillator are
phase-locked but not synchronised on P . Fénichel’s theorem guarantees that
both S and P persist as invariant submanifolds of (R/2πZ)3 for small ε ̸= 0.
Hence, so do their images e(S), e(P ) ⊂ Tε ⊂ C3 as invariant manifolds for (6.1).

For small ε ̸= 0, a typical solution of (6.1) will therefore first converge to
the 3-dimensional invariant torus Tε on a timescale of the order t ∼ 1. It
will subsequently converge to either e(S) or e(P ) on the much longer timescale
t ∼ ε−2, and it is this slow dynamics that governs the synchronisation of the first
and third oscillator. This multiple timescale dynamical process is illustrated in
Figure 2. Figure 3 confirms numerically that the timescale of synchronisation
of z1 and z3 is indeed of the order ε−2.

Remark 10. We point out that the parameters in (6.1) can be tuned so that
either of the two low-dimensional tori S or P is the stable one. Assume for
instance that α, a > 0 and γ, c < 0, so that T0 (and hence Tε) is stable. If
in addition we choose the parameters so that cδ + dγ = 0, then the expression

for A simplifies to a+(b−β)(δ/γ)+α(δ/γ)2

4a2+(ω1−ω2)2
. If δ ̸= 0, then it is clear that we can

make this both positive and negative, for instance by varying the parameter b.
Interestingly, this shows that properties of the second oscillator may determine
whether the first and third oscillator converge to the synchronised state S or
the phase-locked state P .
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(a) Slow convergence of Φ̂ to zero.
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(b) Convergence of Φ̂ to a non-zero value.

Figure 2: Numerically obtained plots of the phase-difference Φ̂ = Arg(z1z3) ≈
ϕ1 − ϕ3 against time, for two different realisations of system (6.1).

Numerics

Before proving (6.2) and (6.3), we present some numerical results on system
(6.1). Figure 2 shows numerically obtained plots of Φ̂ = Arg(z1z3) against
time, for two different realisations of system (6.1). We use Φ̂ as a proxy for
Φ = ϕ1 − ϕ3. As this approximation does not take into account the distortion
of the perturbed invariant torus, we observe small amplitude, rapid oscillations
in Φ̂, causing the lines in Figure 2 to be thick. In Figure 2a, we have chosen the
parameter values

α = 1 β = 1 γ = −1 δ = 1 ;
a = 1 b = 2 c = −1 d = −1 ,

(6.4)

together with ε = 0.1. It follows that cδ + dγ = 0, and so A = 1
5 > 0, see

Remark 10. The above analysis therefore predicts that Φ̂ should converge to
zero, which the figure indeed shows. The convergence is very slow, as only
around t = 2000 do we find that Φ̂ is indistinguishably close to zero. We will
comment more on the rate of convergence below. Figure 2a was generated using
Euler’s method with time steps of 0.05, starting from the point in phase space
(z1, z2, z3) = (−1, 1 + 0.4i,−1 + 0.3i) ∈ C3.

For Figure 2b we have likewise set ε = 0.1, but have instead chosen

α = 1 β = 0.1 γ = −1 δ = 1 ;
a = 1 b = 6 c = −1 d = −1 ,

(6.5)

which yields A = −3.9
4+(3.9)2 = −0.203 . . . < 0. Hence, our theory predicts Φ̂ to

converge to a non-zero constant value, which is indeed seen to be the case. Again
the thickness of the line is due to rapid oscillations. Figure 2b is generated in
the same way as Figure 2a, except that the starting point for Euler’s method is
now (z1, z2, z3) = (1 + 0.3i, 1 + 0.4i,−0.2 + 0.9i).

Finally, Figure 3 displays the rate of convergence to synchrony as a function
of ε. The figure was made using Euler’s method with time-steps of 0.05, all
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Figure 3: Log-log plot of the time T0.1 it takes for Φ̂ to decrease by a factor of
10, against the coupling parameter ε.

starting from the same point (z1, z2, z3) = (−1+0.3i, 1+0.4i,−1+0.5i). We have
again chosen the parameters as in (6.4), so that we may expect Φ̂ to converge
to zero. However, the rate at which this occurs depends on ε. We measure this
rate by recording T0.1, which is the smallest time t for which |Φ̂(t)| ≤ 0.1|Φ̂(0)|.

Figure 3 shows a log-log plot of T0.1 against ε. The crosses in the figure
represent numerical results for 20 different values of ε. Shown in green is the line
with slope −2 through the leftmost cross. We see that ln(T0.1) = −2 ln(ε) + C
for some C ∈ R to very good approximation. Hence we find T0.1 ∼ ε−2, which
is fully in agreement with our predictions.

Setup: the unperturbed problem

We now start our proof of formulas (6.2) and (6.3). We first recall some observa-
tions from Example 5.2, and make assumptions on the parameters that appear
in (6.1). Specifically, we assume that these parameters are chosen so that

αγ < 0, ac < 0, βγ − αδ ̸= 0, bc− ad ̸= 0 and ω1 = ω3 ̸= ω2 .

Recall from Example 5.2 that this ensures that all three uncoupled oscillators
possess a unique hyperbolic periodic orbit, with nonzero frequencies ω1 = ω3 =
β − αδ/γ and ω2 = b − ad/c ̸= ω1. The product of these periodic orbits forms
a 3-dimensional reducible normally hyperbolic (quasi-)periodic invariant torus
T0 ⊂ C3. An embedding of T0 is given by

e0 : (R/2πZ)3 → C3 defined by e0(ϕ1, ϕ2, ϕ3) = (R1 e
iϕ1 , R2 e

iϕ2 , R3 e
iϕ3)

where
R1 = R3 =

√
−α/γ > 0 and R2 =

√
−a/c > 0 .
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This embedding sends integral curves of the constant vector field ω = (ω1, ω2, ω3)
on (R/2πZ)3 to solutions of (6.1) (with ε = 0) on C3.

It follows from Example 5.2 and Lemma 5.3 that a Floquet matrix for T0 is

L = diag(−2α,−2a,−2α) ,

with corresponding fast fibre map given by the family of injective linear maps
N : (R/2πZ)3 → L(R3,C3) defined by

N(ϕ1, ϕ2, ϕ3) = diag(eiϕ1(γ + iδ), eiϕ2(c+ id), eiϕ3(γ + iδ)) .

The projection onto the tangent bundle along the fast fibre bundle is given by

π(ϕ1, ϕ2, ϕ3) = diag(eiϕ1π1(0)e
−iϕ1 , eiϕ2π2(0)e

−iϕ2 , eiϕ3π3(0)e
−iϕ3) .

Here,

π1(0)(x1 + iy1) = i(y1 − (δ/γ)x1) , π2(0)(x2 + iy2) = i(y2 − (d/c)x2) ,

and π3(0) = π1(0).

The first tangential homological equation

We now compute f1 and g1 from the first tangential homological equation, see
(4.4), with U1 as given in (4.3). A short calculation shows that the projection
of the inhomogeneous term G1(ϕ) = F1(e0(ϕ)) = (R2e

iϕ2 , R1e
iϕ1 , R2e

iϕ2) is

(π ·G1)(ϕ) =

 iR2e
iϕ1 (sin(ϕ2 − ϕ1)− (δ/γ) cos(ϕ2 − ϕ1))

iR1e
iϕ2 (sin(ϕ1 − ϕ2)− (d/c) cos(ϕ1 − ϕ2))

iR2e
iϕ3 (sin(ϕ2 − ϕ3)− (δ/γ) cos(ϕ2 − ϕ3))

 .

This is clearly in the range of e′0(ϕ) = diag(iR1e
iϕ1 , iR2e

iϕ2 , iR3e
iϕ3). Thus the

first tangential homological equation becomes

∂ωg1(ϕ) + f1(ϕ) = U1(ϕ) =

 (R2/R1) (sin(ϕ2 − ϕ1)− (δ/γ) cos(ϕ2 − ϕ1))
(R1/R2) (sin(ϕ1 − ϕ2)− (d/c) cos(ϕ1 − ϕ2))
(R2/R3) (sin(ϕ2 − ϕ3)− (δ/γ) cos(ϕ2 − ϕ3))

 .

Because ω1 ̸= ω2 we are able to choose the solutions f1(ϕ) = (0, 0, 0) and

g1(ϕ) =
1

ω1 − ω2

 (R2/R1) (cos(ϕ2 − ϕ1) + (δ/γ) sin(ϕ2 − ϕ1))
−(R1/R2) (cos(ϕ1 − ϕ2) + (d/c) sin(ϕ1 − ϕ2))
(R2/R3) (cos(ϕ2 − ϕ3) + (δ/γ) sin(ϕ2 − ϕ3))

 .

The first normal homological equation

Another short computation allows us to express the projection (1− π) ·G1 as

((1− π) ·G1)(ϕ) =

 eiϕ1(γ + iδ)(R2/γ) cos(ϕ2 − ϕ1)
eiϕ2(c+ id)(R1/c) cos(ϕ1 − ϕ2)
eiϕ3(γ + iδ)(R2/γ) cos(ϕ2 − ϕ3)

 .
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This is clearly in the range of N(ϕ) = diag(eiϕ1(γ+iδ), eiϕ2(c+id), eiϕ3(γ+iδ)).
Thus the first normal homological equation, see (4.5) and (4.3), reads

∂ωh1(ϕ) + diag(2α, 2a, 2α)h1(ϕ) = V1(ϕ) =

 (R2/γ) cos(ϕ2 − ϕ1)
(R1/c) cos(ϕ1 − ϕ2)
(R2/γ) cos(ϕ2 − ϕ3)

 .

The solution reads

h1(ϕ) =


R2

γ(4α2+(ω1−ω2)2)
(2α cos(ϕ2 − ϕ1) + (ω2 − ω1) sin(ϕ2 − ϕ1))

R1

c(4a2+(ω1−ω2)2)
(2a cos(ϕ1 − ϕ2) + (ω1 − ω2) sin(ϕ1 − ϕ2))

R2

γ(4α2+(ω1−ω2)2)
(2α cos(ϕ2 − ϕ3) + (ω2 − ω1) sin(ϕ2 − ϕ3))

 .

Second order terms

Let us clarify that we will not solve the second order homological equations
completely. Instead, the only second order terms that we compute explicitly are

the first and third components f
(1)
2 and f

(3)
2 of the second order part f2 of the

reduced phase vector field. As was explained above, this suffices to obtain the

desired asymptotic expression for d
dt (ϕ1 − ϕ3) = ε2

(
f
(1)
2 (ϕ)− f

(3)
2 (ϕ)

)
+ ε3 . . ..

We first compute the inhomogeneous term G2 as given in (2.4). Because
F2 = 0 and f1 = 0, we see that

G2 =
1

2
(F′′

0 ◦ e0)(e1, e1) + (F′
1 ◦ e0) · e1

consists only of two terms. It also turns out that the first of these terms con-
tributes in a rather trivial manner to the phase dynamics at order ε2. This term
can be computed by making use of the expansion

|Rje
iϕj + εe

(j)
1 (ϕ)|2(Rje

iϕj + εe
(j)
1 (ϕ)) = R3

je
iϕj + εR2

j

(
2e

(j)
1 (ϕ) + e2iϕje

(j)
1 (ϕ)

)
+ ε2Rj

(
2eiϕj |e(j)1 (ϕ)|2 + e−iϕj (e

(j)
1 (ϕ))2

)
+O(ε3) .

This leads to the formula

1

2
(F′′

0(e0(ϕ))(e1(ϕ), e1(ϕ))=R1(γ + iδ)(2eiϕ1 |e(1)1 (ϕ)|2
R2(c+ id)(2eiϕ2 |e(2)1 (ϕ)|2
R3(γ + iδ)(2eiϕ3 |e(3)1 (ϕ)|2


︸ ︷︷ ︸

=:T1(ϕ)∈ imN(ϕ)

+

R1(γ + iδ)e−iϕ1(e
(1)
1 (ϕ))2

R2(c+ id)e−iϕ2(e
(2)
1 (ϕ))2

R3(γ + iδ)e−iϕ3(e
(3)
1 (ϕ))2


︸ ︷︷ ︸

=:T2(ϕ)

. (6.6)

It is clear that the first term on the right hand side of (6.6)—which we called

T1(ϕ)—lies in the range of N(ϕ) because 2Rj |e(j)1 (ϕ)|2 ∈ R for j = 1, 2, 3. So
this first term vanishes when we apply the projection π(ϕ).

25



The projection of the second term on the right hand side of (6.6)—which
we called T2(ϕ)—can be computed as follows. Recall from (4.1) that e1(ϕ) =
e′0(ϕ) · g1(ϕ) +N(ϕ) · h1(ϕ), where e0, g1, N and h1 are given in the formulas

above. This can be used to expand, first the (e
(j)
1 (ϕ))2, and then T2(ϕ) in

trigonometric polynomials. It is not very hard to see that this must yield a
formula of the form

π(ϕ)T2(ϕ) =

 R1ie
iϕ1 (C +D sin(2ϕ2 − 2ϕ1) + E cos(2ϕ2 − 2ϕ1))

R2ie
iϕ2

(
C̃ + D̃ sin(2ϕ2 − 2ϕ1) + Ẽ cos(2ϕ2 − 2ϕ1)

)
R3ie

iϕ3 (C +D sin(2ϕ2 − 2ϕ3) + E cos(2ϕ2 − 2ϕ3))


for certain real numbers C,D,E, C̃, D̃, Ẽ that we shall not explicitly compute
here. Note that this clearly lies in the range of e′0(ϕ). It follows that

U1st
2 (ϕ) =

 C +D sin(2ϕ2 − 2ϕ1) + E cos(2ϕ2 − 2ϕ1)

C̃ + D̃ sin(2ϕ2 − 2ϕ1) + Ẽ cos(2ϕ2 − 2ϕ1)
C +D sin(2ϕ2 − 2ϕ3) + E cos(2ϕ2 − 2ϕ3)


is the first part of the inhomogeneous right hand side of the second tangential
homogeneous equation ∂ωg2 + f2 = U2. Because 2ω1 ̸= 2ω2, only the constant
part (C, C̃, C) of this U1st

2 (ϕ) is resonant; all other terms can be absorbed in g2.
Thus the resonant normal form of this part of f2 is (C, C̃, C)T . As this constant
vector field does not contribute to d

dt (ϕ1 − ϕ3), we compute neither C nor C̃
explicitly.

We proceed by considering the other term in G2, namely (F′
1 ◦ e0) · e1.

Recalling that F1(z) = (z2, z1, z2), we see that this term equals

F′
1(e0(ϕ)) · e1(ϕ) =

 e
(2)
1 (ϕ)

e
(1)
1 (ϕ)

e
(2)
1 (ϕ)

 =

 eiϕ2(iR2g
(2)
1 (ϕ) + (c+ id)h

(2)
1 (ϕ))

eiϕ1(iR1g
(1)
1 (ϕ) + (γ + iδ)h

(1)
1 (ϕ))

eiϕ2(iR2g
(2)
1 (ϕ) + (c+ id)h

(2)
1 (ϕ))

 .

Using the expressions for π(ϕ), g1(ϕ) and h1(ϕ) provided above, one can com-
pute that the projection of this term has the form

π(ϕ) · F′
1(e0(ϕ)) · e1(ϕ) =

 iR1e
iϕ1 0 0

0 iR2e
iϕ2 0

0 0 iR3e
iϕ3

 · U2nd
2 (ϕ) , (6.7)

in which now

U2nd
2 (ϕ) =


B + F sin(2ϕ1 − 2ϕ2) +G cos(2ϕ1 − 2ϕ2)

B̃ + F̃ sin(2ϕ1 − 2ϕ2) + G̃ cos(2ϕ1 − 2ϕ2){
A sin(ϕ1 − ϕ3) +B cos(ϕ1 − ϕ3)
+F sin(ϕ1 + ϕ3 − 2ϕ2) +G cos(ϕ1 + ϕ3 − 2ϕ2)

}
 . (6.8)

With some effort the constants A and B can be computed by hand, yielding

A = 1
4a2+(ω1−ω2)2

(
δ
γ (ω2 − ω1) + a

(
1 + dδ

cγ

)
+ 2a2

(
d
c + δ

γ

)
1

ω2−ω1

)
,

B = 1
4a2+(ω1−ω2)2

(
(ω2 − ω1) + a

(
d
c − δ

γ

)
+ 2a2

(
1− dδ

cγ

)
1

ω2−ω1

)
.

(6.9)

26



We did not compute any of the other constants. As ω1 = ω3 ̸= ω2, the resonant
part of U2nd

2 (ϕ) is given by f2(ϕ) = (B, B̃, A sin(ϕ1 − ϕ3) + B cos(ϕ1 − ϕ3))
T .

The other terms in U2nd
2 (ϕ) can be absorbed into g2 when solving the tangential

homological equation ∂ωg2 + f2 = U2.

Conclusion

To summarise, we computed that f1(ϕ) = (0, 0, 0)T and

f2(ϕ) =

 B + C

B̃ + C̃
A sin(ϕ1 − ϕ3) +B cos(ϕ1 − ϕ3) + C

 . (6.10)

The constants A and B are given in (6.9), but we did not compute B̃, C or C̃.
Because ω1 = ω3 and ϕ̇ = ω + εf1(ϕ) + ε2f2(ϕ) +O(ε3), we conclude that

d

dt
(ϕ1 − ϕ3) = ε2 (−A sin(ϕ1 − ϕ3)−B cos(ϕ1 − ϕ3) +B) +O(ε3) . (6.11)

This is exactly equation (6.2).
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[18] I. León and D. Pazó, Phase reduction beyond the first order: The case of the
mean-field complex Ginzburg-Landau equation, Phys. Rev. E 100 (2019),
no. 1, 012211.

[19] I. Lizarraga, B. Rink, and M. Wechselberger, Multiple timescales and the
parametrisation method in geometric singular perturbation theory, Nonlin-
earity 34 (2021), no. 6, 4163–4201.

28



[20] B. Monga, D. Wilson, T. Matchen, and J. Moehlis, Phase reduction and
phase-based optimal control for biological systems: a tutorial, Biological
Cybernetics 113 (2019), no. 1-2, 11–46.

[21] H. Nakao, Phase reduction approach to synchronisation of nonlinear oscil-
lators, Contemporary Physics 57 (2016), no. 2, 188–214.

[22] E. Nijholt, J. Ocampo-Espindola, D. Eroglu, I. Kiss, and T. Pereira, Emer-
gent hypernetworks in weakly coupled oscillators, Nature Comm. 13 (2022),
no. 1, 4849.

[23] N. Ognjanovski, S. Schaeffer, and J. Wu, Parvalbumin-expressing interneu-
rons coordinate hippocampal network dynamics required for memory consol-
idation, Nature Comm. 8 (2017), 15039.

[24] J. Palva, S. Palva, and K. Kaila, Phase synchrony among neuronal oscilla-
tions in the human cortex, J. Neurosci. 25 (2005), no. 15, 3962–3972.

[25] B. Pietras and A. Daffertshofer, Network dynamics of coupled oscillators
and phase reduction techniques, Phys. Rep. 819 (2019), 1–105.

[26] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization; a universal
concept in nonlinear sciences, Cambridge University Press, 2001.

[27] M. Rosenblum and A. Pikovsky, Numerical phase reduction beyond the first
order approximation, Chaos 29 (2019), 011105.

[28] J.A. Sanders, F. Verhulst, and J. Murdock, Averaging methods in nonlinear
dynamical systems, second ed., Applied Mathematical Sciences, vol. 59,
Springer, New York, 2007.

[29] G. Teschl, Ordinary differential equations and dynamical systems, Ameri-
can Mathematical Society, 2012.

[30] M. Wechselberger, Geometric singular perturbation theory beyond the stan-
dard form, Springer, 2020.

29


	Introduction
	An iterative scheme
	Reducibility and the fast fibre map
	Solving the iterative equations
	Reducibility for oscillator systems
	Application to remote synchronisation
	Acknowledgements

