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Abstract

To model dynamical systems on networks with higher order (non-
pairwise) interactions, we recently introduced a new class of ODEs on
hypernetworks. Here we consider one-parameter synchrony breaking bi-
furcations in such ODEs. We call a synchrony breaking steady state
branch “reluctant” if it is tangent to a synchrony space, but does not
lie inside it. We prove that reluctant synchrony breaking is ubiquitous
in hypernetwork systems, by constructing a large class of examples that
support it. We also give an explicit formula for the order of tangency to
the synchrony space of a reluctant steady state branch.

1 Introduction

Recent advances in a large variety of research fields have highlighted the im-
portance of non-pairwise interactions for the collective dynamical behavior of
complex network systems. These so-called higher order interactions turn out
to be crucial in problems from, e.g., neuroscience (see [1]), social science (see
[2]), and ecology (see [3]). Higher order interaction networks have found their
way into various recent mathematical studies as well. We mention in particular
the theoretical papers [4, 5, 6, 7, 8, 9, 10], which investigate synchronisation
in classes of networks with non-pairwise, nonlinear interaction in their equation
of motion. We also refer to the excellent surveys [11, 12, 13, 14, 15] and refer-
ences therein, for an in-depth discussion of higher order networks, and numerous
examples of higher order network systems arising in applications.

This paper builds on previous work of the authors [10], in which we gener-
alised the notion of a coupled cell network, introduced by Golubitsky, Stewart,
Field et al. [16, 17, 18], to the context of higher order networks. We did this
by introducing a class of “hypernetworks” and defining their “admissible” maps
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and ODEs, thus formalising the notion of a dynamical system on a higher order
interaction network. We also introduced balanced colorings [16] of hypernet-
works, and hypergraph fibrations [19, 20], and used these concepts to classify
the robust synchrony patterns, that is, the synchrony spaces that are invariant
under every admissible map, to hypernetwork dynamical systems.

Perhaps the most surprising result in [10] is the observation that the robust
synchrony spaces of a hypernetwork system are not determined by linear terms
in its equations of motion. This distinguishes hypernetworks from classical
(dyadic) coupled cell networks, for which it was proved in [21] that a synchrony
space is invariant under every admissible map, if and only if it is invariant under
every linear admissible map, see also [22]. On the contrary, we prove in [10] that
a synchrony space of a hypernetwork system is robustly invariant, whenever it
is invariant under all polynomial admissible maps of a specific degree, which de-
pends on the order of the hyperedges in the hypernetwork. Examples moreover
show that our estimate for this polynomial degree is sharp.

As a consequence, a hypernetwork-admissible map of sufficiently low poly-
nomial degree may admit “ghost” synchrony spaces that are not supported by
general, e.g., higher degree polynomial admissible maps. These ghost synchrony
spaces may have a profound effect on the dynamics of the hypernetwork system.
In particular, the final section of [10] presents numerical evidence that they can
give rise to a remarkable new type of synchrony breaking bifurcation.

We in fact observed this type of bifurcation in a one-parameter family of
admissible ODEs for the hypernetwork depicted in Figure 2, meaning that these
ODEs are of the form given in Equation (2.3) below. Figure 1 displays two
numerically obtained branches of steady states that emerge in a bifurcation in
a particular system of this form. The steady state branches were found by
forward integrating the equations of motion – so they are asymptotically stable.
We see that y0 = y1 for negative values of the bifurcation parameter λ, so on
the negative branch y0 and y1 are synchronous. On the positive branch, y0

and y1 are nonsynchronous, i.e., for positive values of λ it holds that y0 6= y1.
However, the difference y0− y1 only increases very slowly as a function of λ. In
other words: the branch is tangent to the synchrony space {y0 = y1}. In [10],
we called this phenomenon “reluctant synchrony breaking”. A more detailed
numerical analysis, see Figures 3a and 3b, suggests that y1 − y0 ∼ λ3, i.e., that
the branch has a third order tangency to the synchrony space. In Section 4, we
will prove that this is indeed the case.

The goal of this paper is to show that reluctant synchrony breaking is ubiqui-
tous in hypernetworks. The main result that we present is Theorem 4.2, which
states that reluctant synchrony breaking occurs generically in one-parameter
bifurcations in a large class of hypernetworks. These so-called augmented hy-
pernetworks are constructed by coupling new nodes to an existing network or
hypernetwork by means of specific higher order interactions. The hypernetwork
depicted in Figure 2 is just one example of such an augmented hypernetwork.
This means that the anomalous bifurcation that was discovered in [10] and de-
scribed above is not a numerical artefact. Instead, reluctant synchrony breaking
is a generic phenomenon in ODEs of the form (2.3). To illustrate our main result,
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Figure 1: Numerically obtained steady state branches that emerge in a syn-
chrony breaking bifurcation in an admissible ODE for the hypernetwork de-
picted in Figure 2. For λ < 0 the branch satisfies y0 = y1. We will prove that
y1 − y0 ∼ λ3 for λ > 0. Figure taken from [10].

we present several more examples in this paper. We also argue (see Remark 5)
that one may design augmented hypernetworks which admit reluctant synchrony
breaking bifurcation branches with an arbitrarily high order of reluctancy, i.e.,
an arbitrarily high order of tangency to a synchrony space.

Structure of the article. In Section 2, we illustrate reluctant synchrony break-
ing by studying the example presented in [10] in more detail. In Section 3, we
recall our general mathematical framework for dynamical systems defined on
hypernetworks, and we give the definition of an augmented hypernetwork. In
Section 4, we prove our main result, Theorem 4.2, which states that reluctant
synchrony breaking occurs generically in augmented hypernetworks, and which
provides a formula for the order of reluctancy of the synchrony breaking steady
state branch. We also apply the theorem to the example discussed in this intro-
duction. In Section 5, the main theorem is illustrated by three more examples.

2 A first example

We now provide more details on the example that was briefly discussed in the
introduction, and that was introduced and studied numerically in [10]. As
mentioned above, this example concerns the hypernetwork shown in Figure 2.
In [10], we introduced the class of admissible ODEs of a hypernetwork (see also
Section 3). The admissible ODEs associated to the hypernetwork in Figure 2
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Figure 2: The hypernetwork that supports the unusual “reluctant” synchrony
breaking steady-state branch shown in Figure 1.

are all the ODEs of the form

ẋ0 = G(x0, x0, x0) ,
ẋ1 = G(x1, x1, x0) ,
ẋ2 = G(x2, x1, x2) ,
ẏ0 = F (y0, (x0, x1), (x1, x2), (x2, x0)) ,
ẏ1 = F (y1, (x0, x2), (x1, x0), (x2, x1)) ,

(2.1)

for certain smooth functions F and G. We assume for now that the variables
xi, yj take values in R, so that F : R×R2×R2×R2 → R and G : R×R×R→
R. The brackets in F serve to distinguish the two-dimensional inputs from
hyperedges of order two (the purple arrows in the figure.) The assumption
that these hyperedges are identical, translates into the requirement that F is
invariant under all permutations of these pairs of variables. That is, we require
that for all Y,X1, . . . , X6 ∈ R,

F (Y, (X0, X1), (X2, X3), (X4, X5)) =

F (Y, (X2, X3), (X0, X1), (X4, X5)) =

F (Y, (X0, X1), (X4, X5), (X2, X3)) .

(2.2)

To study bifurcations within this class of admissible ODEs, we parameterize the
response functions F and G in (2.1) by a scalar variable λ taking values in some
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open neighborhood Ω ⊆ R of the origin. This gives the one-parameter family of
hypernetwork admissible ODEs

ẋ0 = G(x0, x0, x0;λ) ,
ẋ1 = G(x1, x1, x0;λ) ,
ẋ2 = G(x2, x1, x2;λ) ,
ẏ0 = F (y0, (x0, x1), (x1, x2), (x2, x0);λ) ,
ẏ1 = F (y1, (x0, x2), (x1, x0), (x2, x1);λ) .

(2.3)

To guarantee that the system (2.3) is admissible for every fixed value of λ ∈ Ω,
we assume F satisfies Equation (2.2) for any fixed value of λ. Let us in addition
assume

F (0, (0, 0), (0, 0), (0, 0); 0) = G(0, 0, 0; 0) = 0 ,

so that the system (2.3) has a steady-state point at the origin for λ = 0. We
may study the persistence of this steady-state by investigating the Jacobian at
the origin of the system for λ = 0. To this end, we write

F (Y, (X0, X1), (X2, X3), (X4, X5);λ)

= aY + bX0 + cX1 + bX2 + cX3 + bX4 + cX5 + dλ

+O(‖(Y,X0, . . . , X5;λ)‖2) ,

(2.4)

and

G(X0, X1, X2;λ) = AX0 +BX1 + CX2 +O(|λ|+ ‖(X0, X1, X2)‖2) , (2.5)

with a, . . . , d, A,B,C ∈ R, to specify the linear terms. The multiple occurrence
of the terms b and c in (2.4) is due to the invariance properties of F in (2.2).
In terms of these coefficients, the Jacobian matrix of the right hand side of
Equation (2.3) at (x, λ) = (0, 0) with respect to the spatial variables x is

A+B + C 0 0 0 0
C A+B 0 0 0
0 B A+ C 0 0

b+ c b+ c b+ c a 0
b+ c b+ c b+ c 0 a

 .

The eigenvalues of this Jacobian are A + B + C, A + B and A + C (all with
multiplicity 1), and a (with geometric multiplicity 2). To allow for a steady state
bifurcation to occur at λ = 0, we consider the case A + B = 0. We moreover
assume the generic conditions a,A+B + C,A+ C 6= 0 to hold.

We claim that as λ is varied near 0, two branches of steady states will
generically emerge from the origin. These can be found by first focusing on the
subnetwork given by the three nodes of the same type. That is, we first solve

G(x0, x0, x0;λ) = 0 ,

G(x1, x1, x0;λ) = 0 ,

G(x2, x1, x2;λ) = 0 .
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A direct calculation shows that, for generic values of the first and second degree
Taylor coefficients of G, one of the steady state branches is locally given by

x0(λ) = x1(λ) = x2(λ) = x(λ) = D0λ+O(|λ|2) , (2.6)

while another branch is given by

x0(λ) = D0λ+O(|λ|2) , x1(λ) = D1λ+O(|λ|2) ,

x2(λ) = D2λ+O(|λ|2) ,
(2.7)

for certain non-zero and mutually distinct D0, D1, D2 ∈ R. We omit the com-
putation of these branches. For a detailed exposition on how to compute steady
state bifurcation branches in so-called feedforward networks (i.e. networks with
no loops other than self-loops), we refer to [23].

We now turn to computing the values of y0 and y1 along the bifurcation
branches. We start by looking at the first branch, given by Equation (2.6).
Restricted to this branch, the steady state equation ẏ0 = 0 becomes

F (y0, (x(λ), x(λ)), (x(λ), x(λ)), (x(λ), x(λ));λ) = 0 . (2.8)

Combining (2.4) and (2.6) this can be expanded as

ay0 + (3D0(b+ c) + d)λ+O(‖(y0;λ)‖2) = 0 ,

which by the implicit function theorem has a unique solution given by

y0(λ) =
−3D0(b+ c)− d

a
λ+O(|λ|2) .

Setting ẏ1 = 0 gives precisely the same equation to solve as (2.8), but with y0

replaced by y1. Hence, we find y0(λ) = y1(λ) along this first branch, which we
will therefore refer to as the synchronous branch of system (2.3).

We now turn to the second branch of steady states, of which the asymptotics
of the x-variables is given by Equation (2.7). Combining (2.4) with (2.7), we
find that ẏ0 = 0 is equivalent to

ay0 + ((b+ c)(D0 +D1 +D2) + d)λ+O(‖(y0;λ)‖2) = 0 .

It follows again from the implicit function theorem that locally precisely one
solution exists, given by

y0(λ) =
−(b+ c)(D0 +D1 +D2)− d

a
λ+O(|λ|2) . (2.9)

In exactly the same way, we find that ẏ1 = 0 is solved for by

y1(λ) =
−(b+ c)(D0 +D1 +D2)− d

a
λ+O(|λ|2) . (2.10)

Note that these expressions for y0(λ) and y1(λ) agree up to first order in λ.
However, unlike for the synchronous branch, there is no reason to conclude that
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Figure 3: More details for the steady state branches depicted in Figure 1. The
black line segment in the log-log plot has slope 3 and was added to show that
y0(λ)− y1(λ) ∼ λ3. Figures taken from [10].

y0(λ) = y1(λ) along this branch, as the equations for ẏ0 and ẏ1 in (2.3) are
different for distinct x0, x1 and x2:

F (y0, (x0(λ), x1(λ)), (x1(λ), x2(λ)), (x2(λ), x0(λ));λ) = 0 ,

F (y1, (x0(λ), x2(λ)), (x1(λ), x0(λ)), (x2(λ), x1(λ));λ) = 0 .

We will refer to the branch of steady states given by Equations (2.7), (2.9)
and (2.10) as the reluctant branch of (2.3).

Figure 1 demonstrates numerically that the reluctant branch is truly non-
synchronous. The figure was taken from [10], and it shows a numerically ob-
tained plot of the asymptotically stable bifurcation branches that emerge in a
bifurcation in a particular realisation of system (2.3), namely for the choices

G(X0, X1, X2, λ) = −X0 +X1 −X2 + 8λX0 + 4X2
0 and

F (Y, (X0, X1), (X2, X3), (X4, X5), λ) = −5Y + 14λ

− h(10X0 − 12X1)− h(10X2 − 12X3)− h(10X4 − 12X5)

in which
h(x) = sin(x) + cos(x)− 1 . (2.11)

Figure 1 shows the synchronous branch for λ < 0 and the reluctant branch for
λ > 0 – indeed, y0 and y1 agree for λ < 0, and quite clearly do not for λ > 0.
This becomes even more visible in Figure 3a, which shows y0− y1 as a function
of λ. The logarithmic plot in Figure 3b suggests that y0(λ) − y1(λ) ∼ λ3. In
Section 4, we prove that this is truly the case.

In this article, we rigorously prove the existence of reluctant steady state
branches in bifurcations in a large class of hypernetwork systems. Specifi-
cally, we will show that reluctant bifurcation branches appear in generic one-
parameter synchrony breaking steady state bifurcations in the admissible ODEs
for such hypernetworks. We also provide a formula for the order in λ with which
the “reluctant nodes” separate.
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3 Preliminaries

We now briefly introduce our formalism for hypernetwork dynamical systems.
See [10] for a more detailed exposition. In fact, in the latter paper, we define
a hypernetwork to be a collection N = (V,H, s, t) consisting of a finite set of
vertices or nodes V , a finite set of hyperedges H, and source and target maps s
and t defined on H. Given an edge h ∈ H, its target t(h) ∈ V is a single vertex,
whereas the source s(h) = (s1(h), . . . , skh(h)) ∈ V kh is an ordered kh-tuple of
vertices. The number kh > 0 depends on the hyperedge h, and is called its
order. To avoid cluttered notation though, we often suppress the dependence
of kh on h when it is clear from context, and simply write k. Note that the kh
vertices in s(h) are not required to be distinct. The order of a hypernetwork
N is then defined as the maximum of the orders of its hyperedges, so that the
hypernetworks of order 1 are precisely the classical (dyadic) networks.

In addition to the data that is explicitly given in N = (V,H, s, t), we also
specify equivalence relations on both the nodes V and the hyperedges H. We
typically refer to both as the color or type relation. The reason that these re-
lations are not specified in N is because they will apply to all hypernetworks
at once. That is, it will make sense for two nodes in different hypernetworks to
have the same color, and likewise for multiple hyperedges across different hyper-
networks. This allows us to define node- and hyperedge-type preserving maps
between different hypernetworks, which in turn give rise to semi-conjugacies
between the dynamics, see [10] for more details. Intuitively, this color-relation
conveys whether two nodes correspond to comparable or incomparable agents
in a real-world system modelled by the hypernetwork, and similarly whether or
not two hyperedges specify the same influence. As is suggested by this inter-
pretation, the vertex- and hyperedge-types have to satisfy certain consistency
conditions. These are:

1. if two nodes v0 and v1 are of the same type, then there exists a hyperedge-
type preserving bijection between the set of hyperedges targeting v0 and
those targeting v1;

2. two hyperedges h0, h1 of the same type have the same order k, and for each
i ∈ {1, . . . , k} the nodes si(h0) and si(h1) are of the same vertex-type.

As mentioned, the conditions above can be seen as natural for real-world coupled
systems. Their motivation also comes from the fact that they allow us to define
dynamical systems that reflect the given hypernetwork structure.

These systems are specified by so-called admissible vector fields. To intro-
duce these, we fix an internal phase space Rnv for each node v ∈ V , which will
be identical for nodes of the same type. Each node v is given a state variable
xv ∈ Rnv . The total phase space of the hypernetwork dynamical system de-
scribes the states of all these variables, and is thus the direct sum

⊕
v∈V Rnv .

We also specify, for each hyperedge h ∈ H, the vector of its source variables

xs(h) =
(
xs1(h), . . . , xskh

(h)

)
∈

kh⊕
i=1

Rnsi(h) .
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Next, we choose for each node v ∈ V its response function

Fv :
⊕

h : t(h)=v

kh⊕
i=1

Rnsi(h) → Rnv . (3.1)

These functions must satisfy certain conditions that reflect our intuitive idea
that hyperedges of the same type encode identical influence, as well as the
notion that nodes of the same type respond to their input in the same way. In
words, we require that the variables of identical-type hyperedges may be freely
interchanged in Fv, as well as that Fv and Fw are the same when the nodes v
and w are of the same type, after an appropriate identification of their domains.
We may capture both requirements in one succinct condition as follows: given
nodes v and w of the same type, for any hyperedge-type preserving bijection
α : t−1(v)→ t−1(w) we have

Fw

 ⊕
t(h2)=w

xs(h2)

 = Fv

 ⊕
t(h1)=v

xs(α(h1))

 , (3.2)

for all x =
⊕

v∈V xv ∈
⊕

v∈V Rnv . Recall that at least one such α exists when
v and w are of the same type. Finally, we define the hypernetwork admissible
vector field

fN :
⊕
v∈V

Rnv →
⊕
v∈V

Rnv ,

on the total phase space, to be given component-wise by

fNv (x) = Fv

 ⊕
h : t(h)=v

xs(h)


for all v ∈ V and x ∈⊕v∈V Rnv .

Of particular interest in this paper are so-called augmented hypernetworks, also
introduced in [10]. Their definition involves the symmetric group on k + 1
elements, denoted by Sk+1, which acts on the ordered set {0, . . . , k} by per-
mutations. We denote by S0

k+1 and S1
k+1 the subsets of even and odd permu-

tations, respectively, and denote by sgn(σ) ∈ {0, 1} the sign of a permutation

σ ∈ Ssgn(σ)
k+1 .

Definition 3.1 (Definition 5.1 in [10]). Let N be a hypernetwork with k+1 ≥ 3
nodes v0, . . . , vk of the same type. We define the augmented hypernetwork with
core N, denoted by N♦, as the hypernetwork obtained by adding two additional
nodes w0, w1, one self-loop for each wi and (k + 1)! new hyperedges to N. The
new nodes are of the same type, which differs from that of the vi. Likewise,
we construct a new hyperedge-type which we assign to the (k + 1)! additional
hyperedges. Necessarily the self-loops on the new nodes are of a same, new type
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too. The (k + 1)! new hyperedges are indexed by the symmetric group Sk+1,
so that we may denote them by hσ for σ ∈ Sk+1. We define their sources and
targets by

t(hσ) = wsgn(σ) and (3.3)

s(hσ) = (vσ(1), . . . , vσ(k)) ,

where Sk+1 acts on the ordered set {0, . . . , k}. Note that vσ(0) ∈ {v0, . . . , vk} is
therefore the only v-node not in the source of hσ, and that these hyperedges all
have order k.

Example 3.2. The hypernetwork discussed in Section 2 and depicted in Fig-
ure 2, is an example of an augmented hypernetwork. Here the core consists of
the k + 1 = 3 circular nodes in the center and the arrows between them. This
core in fact forms a classic (dyadic) network. The two “added” nodes are de-
picted as the square ones. Equation (2.1) gives the form of a general admissible
vector field for this augmented hypernetwork. Recall that the response function
F in Equation (2.1) is invariant under permutations of the three pairs of inputs,
which reflects that the six “added” hyperedges are all of the same type.

By assumption, all nodes in the core N of an augmented hypernetwork are of
the same type, so that N♦ has precisely two node-types. This means that two

response functions are required to describe an admissible vector field fN
♦

for
N♦. We will usually denote these by F and G, where G is used for the nodes
in N and F for the two additional nodes. Likewise, we see that the total phase
space is determined by two vector spaces: one for the internal dynamics of the
v-nodes, Rnv , and one for that of the w-nodes, Rnw . We will later set both
equal to R. Note that F takes one argument from Rnw , corresponding to the
self-loop, and (k+ 1)!/2 entries from

⊕k Rnv for the remaining hyperedges. As
these latter hyperedges are indexed by (half of) the symmetric group, we may
see the response function as

F : Rnw ⊕
⊕

σ∈S0
k+1

( k⊕
Rnv

)
→ Rnw ,

with the property that the (k+1)!/2 entries with values in
⊕k Rnv may be freely

interchanged. Note that we simply index these entries by S0
k+1 to emphasize that

they correspond to the hyperedges that are indexed by (part of) the symmetric
group. We could have also used S1

k+1 and, because we may freely interchange
these entries, we do not have to give an explicit identification between S0

k+1

and S1
k+1. In particular, in any augmented hypernetwork the dynamics of the

w-nodes may simply be written as

ẏ0 = F

y0,
⊕

σ∈S0
k+1

xσ

 and ẏ1 = F

y1,
⊕

σ∈S1
k+1

xσ

 , (3.4)
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where xσ = (xσ(1), . . . , xσ(k)), and where we write yi for the state of node wi
and xj for the state of node vj .

Remark 1. We may generalise the definition of an augmented hypernetwork by
connecting the auxiliary nodes w0 and w1 only to a subset S of nodes of the
same type of the core, consisting of k + 1 nodes of the same type. In this case,
the nodes in the core that are not elements of S may in fact be of different type.
We can then add (k + 1)! hyperedges of order k, precisely as in Definition 3.1,
but now with all source nodes in S. It will be clear that our results also hold
for such hypernetworks, but to avoid a cluttered exposition we will mostly work
with Definition 3.1. See also Remark 4.

4 Reluctant synchrony-breaking

We now show that the reluctant synchrony breaking observed in Section 2 is not
a peculiarity of systems of the form (2.3), but can occur in any augmented hyper-
network. In fact, we shall give natural conditions on the core N that guarantee
that reluctant synchrony breaking occurs generically in the augmented hyper-
network N♦. Moreover, in Theorem 4.2 below we give a precise expression
for the degree (in the bifurcation parameter) at which the reluctant synchrony
breaking occurs. We start by introducing some useful notation and conventions.

As it is sometimes convenient to make explicit the dependence of an admissi-

ble vector field on its response functions, we will often write fN
♦

(F,G) and fN(G) for

the admissible vector fields of N♦ and N, respectively. Furthermore, because in
this section we are mainly interested in bifurcations, we will often use fN (and

fN
♦

, fN
♦

(F,G) etc.) to denote parameter families of admissible vector fields. This

means fN is an admissible vector field for any fixed value of the bifurcation
parameter, as in Section 2.

Throughout this section we will investigate asymptotics and power series in
λ for bifurcation branches. Some of these might involve fractional powers of λ,
meaning that such branches are only defined for positive or negative values of
λ. To keep this section as readable as possible, we assume from here on out that
all branches are defined for positive values of λ, so that we may always write λp

for any power p ≥ 0. The corresponding results for negative values of λ follow
easily by redefining λ as −λ.

Definition 4.1. Let N be a hypernetwork with n nodes and denote by fN : Rn×
Ω → Rn a one-parameter family of admissible vector fields for N, where each
node has a one-dimensional internal phase space. In this paper, a locally de-
fined branch of steady states x(λ) = (x1(λ), . . . , xn(λ)) for fN is called fully
synchrony-breaking if for all i, j ∈ {1, . . . , n} with i > j there exist numbers
pi,j > 0 and Di,j 6= 0 such that

xi(λ)− xj(λ) = Di,jλ
pi,j + “higher order terms” in λ . (4.1)

Given a fully synchrony-breaking steady state branch, we define its order of
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asynchrony as the number

p̄ =

n∑
i,j=1
i>j

pi,j . (4.2)

In what follows, we will need to make some assumptions about the asymptotics
and regularity of the branches. To avoid a detailed exposition, we instead use
a formal ansatz. From here on out, we will always assume a fully synchrony-
breaking branch x(λ) = (x1(λ), . . . , xn(λ)) to come with a finite set of numbers
Υ ⊆ (0, p̄ ] such that we may write

xi(λ) =
∑
p∈Υ

Ai,pλ
p +O(|λ|p̄+ε) (4.3)

for some ε > 0, and with Ai,p ∈ R. Note that, in contrast to the Di,j in Equation
(4.1), these Ai,p may very well vanish. As we may write

xi(λ)− xj(λ) =
∑
p∈Υ

(Ai,p −Aj,p)λp +O(|λ|p̄+ε) (4.4)

= Di,jλ
pi,j + “higher order terms” ,

and because pi,j ≤ p̄, we see that necessarily pi,j ∈ Υ for all i > j.
In the theorem below, we assume all admissible vector fields correspond to

one-dimensional internal dynamics for each node.

Theorem 4.2. Let N♦ be an augmented hypernetwork with core N, the latter
consisting of k+1 ≥ 3 nodes, and let fN(G) : Rk+1×Ω→ Rk+1 be a one-parameter
family of admissible vector fields for N, corresponding to some response func-
tion G. Assume fN(G) admits a fully synchrony-breaking branch of steady states

x(λ) = (x0(λ), . . . , xk(λ)) with order of asynchrony p̄.

Then for a generic λ-dependent response function F , the system fN
♦

(F,G) :

Rk+3 × Ω→ Rk+3 admits a steady state branch

z(λ) = (x0(λ), . . . , xk(λ), y0(λ), y1(λ))

for which
y0(λ)− y1(λ) = Eλp̄ +O(|λ|p̄+ε) ,

for some non-zero E ∈ R.

Moreover, z(λ) is a branch of steady states for fN
♦

(−F,G) as well, and if x(λ)

is stable for fN(G), then z(λ) is stable for either fN
♦

(F,G) or fN
♦

(−F,G).

Before proving the theorem, we first apply it to our running example.

Example 4.3. In Section 2, we investigated a bifurcation scenario with a fully
synchrony-breaking branch in the core, given by xi(λ) = Diλ + O(|λ|2) for
i ∈ {0, 1, 2} and with mutually distinct Di. It follows that xi(λ) − xj(λ) =
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(Di − Dj)λ + O(|λ|2) for all i, j. As Di − Dj 6= 0 for i > j, we obtain p3,1 =
p3,2 = p2,1 = 1 and hence

p̄ = 1 + 1 + 1 = 3 .

Theorem 4.2 therefore predicts a bifurcation branch

z(λ) = (x0(λ), x1(λ), x2(λ), y0(λ), y1(λ))

in the augmented system fN
♦

F,G, for generic choice of F and with anyG supporting
the aforementioned fully synchrony-breaking branch in the core, which satisfies

y0(λ)− y1(λ) ∼ λ3 .

This is indeed what we found in our numerical investigation, see Figure 3b.

The proof of Theorem 4.2 requires some machinery from [10]. There we intro-
duced the polynomials P(k), given by

P(k) :
⊕

σ∈S0
k+1

Rk → R

P(k)

 ⊕
σ∈S0

k+1

Xσ

 =
∑

σ∈S0
k+1

X1
σ,1X

2
σ,2 · · ·Xk

σ,k ,

(4.5)

for k ∈ N, and where Xσ = (Xσ,1, . . . , Xσ,k) ∈ Rk for σ ∈ S0
k+1. We also state

the following result, a proof of which can be found in [10].

Lemma 4.4 (Lemma 5.6 in [10]). Let

Q :
⊕

σ∈S0
k+1

Rk → R

be a polynomial function that is invariant under all permutations of its #S0
k+1

entries from Rk. Then there exists a polynomial S : Rk+1 → R such that

Q

 ⊕
σ∈S0

k+1

xσ

−Q
 ⊕
σ∈S1

k+1

xσ

 = S(x)
k∏

i,j=0
i>j

(xi − xj) (4.6)

for all x = (x0, . . . , xk) ∈ Rk+1, where xσ = (xσ(1), . . . , xσ(k)) for all σ ∈ Sk+1.

Remark 2. It can readily be seen that for any polynomial Q satisfying the
conditions of Lemma 4.4, (4.6) is actually equivalent to the fact that

Q

 ⊕
σ∈S0

k+1

xσ

 = Q

 ⊕
σ∈S1

k+1

xσ

 (4.7)

whenever (x0, . . . , xk) ∈ Rk+1 satisfies xi = xj for some distinct i, j ∈ {0, , . . . , k}.
This observation still holds when Q is not polynomial, see Lemma 5.5 of [10].
The latter fact actually underlies the proof of Lemma 4.4 that is given in [10].
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Lemma 4.5. The polynomials P(k) defined in (4.5) satisfy

P(k)

 ⊕
σ∈S0

k+1

xσ

− P(k)

 ⊕
σ∈S1

k+1

xσ

 =

k∏
i,j=0
i>j

(xi − xj) (4.8)

for all x = (x0, . . . , xk) ∈ Rk+1.

Proof. By Lemma 4.4 we have

P(k)

 ⊕
σ∈S0

k+1

xσ

− P(k)

 ⊕
σ∈S1

k+1

xσ

 = S(x)

k∏
i,j=0
i>j

(xi − xj)

for some polynomial S. It remains to show that S = 1. To this end, note that
both the left and right hand side of Equation (4.8) has total degree 1+ · · ·+k =
k(k+1)

2 . This means S is a constant polynomial. As both sides of Equation (4.8)
contain a term 1 · x1x

2
2 . . . x

k
k, we see that S = 1 and the result follows.

Before we move on to the proof of Theorem 4.2, we first have a closer look at
the set of powers Υ. Recall that we may write

xi(λ) =
∑
p∈Υ

Ai,pλ
p +O(|λ|p̄+ε) (4.9)

for all the components xi(λ) of a fully synchrony-breaking branch. By adding
zero-coefficients Ai,p to Expression (4.9) and by decreasing ε if needed, we may
assume that for all p, q ∈ Υ, we have

p+ q ∈ Υ if p+ q ≤ p̄ ;
p+ q ≥ p̄+ ε if p+ q > p̄ ,

(4.10)

and also that
1 ∈ Υ if 1 ≤ p̄ ;
1 ≥ p̄+ ε if 1 > p̄ .

More precisely, we can add to Υ all non-zero sums s = c+
∑
p∈Υ cpp with non-

negative integer coefficients c, cp, such that s ≤ p̄. Note that this adds a finite

number of elements to Υ, as necessarily cp ≤
⌈
p̄
p

⌉
and c ≤ dp̄e. It then follows

from Equation (4.10) that p̄ ∈ Υ, as we have pi,j ∈ Υ for all i > j. This allows
us to iteratively investigate coefficients corresponding to (possibly non-integer)
powers of λ in the branches, as well as in polynomial expressions involving the
components of these branches. For instance, if x1(λ) and x2(λ) are given by
Equation (4.9), then we may likewise write

x1(λ)x2(λ) =
∑
p∈Υ

A′pλ
p +O(|λ|p̄+ε) and
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λx1(λ) =
∑
p∈Υ

A′′pλ
p +O(|λ|p̄+ε)

for some A′p, A
′′
p ∈ R. Finally, whenever

w(λ) =
∑
p∈Υ

Apλ
p +O(|λ|p̄+ε)

for some locally defined map w : R≥0 7→ R and with Ap ∈ R, then for q ∈ Υ we
may write

[w(λ)]≤q :=
∑
p∈Υ
p≤q

Apλ
p and [w(λ)]<q :=

∑
p∈Υ
p<q

Apλ
p

for the truncated power series.

Proof of Theorem 4.2. By assumption, x(λ) = (x0(λ), . . . , xk(λ)) locally solves

(fN
♦

(F,G)(x, y;λ))v = (fN(G)(x;λ))v = 0 for all nodes v in the core N and all

y = (y0, y1) ∈ R2. To solve for the y-components, let K ∈ N be such that

(K + 1) min(p | p ∈ Υ) > p̄ . (4.11)

We expand a general response function F as

F (Y,X;λ) = aY +

K∑
`,m=0

Q`,m (X)Y `λm +O(‖ (X, Y ;λ) ‖K+1) (4.12)

for Y ∈ R, λ ∈ R≥0, and where

X :=
⊕

σ∈S0
k+1

Xσ

with Xσ ∈ Rk. Here each Q`,m is a polynomial of degree at most K that is
invariant under all permutations of the vectors Xσ, which follows from the fact
that F is invariant under permutations of these vectors. Our assumption (which
is necessary for a bifurcation) that F (0, 0; 0) = 0 implies that Q0,0(0) = 0.
Moreover, by setting the number a ∈ R equal to the derivative of F at (0, 0; 0)
in the Y -direction, we may assume that Q1,0(0) = 0.

For s ∈ {0, 1}, the equation ẏs = 0 gives

ays +

K∑
`,m=0

Q`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 y`sλ
m +O(‖(x(λ), ys;λ)‖K+1) = 0 , (4.13)

where xσ(λ) = (xσ(1)(λ), . . . , xσ(k)(λ)) for all σ ∈ Sk+1. If we assume a 6= 0
then by the implicit function theorem, this equation locally has a unique solution
ys(λ), which can be written as

ys(λ) =
∑
p∈Υ

Bs,pλ
p +O(|λ|p̄+ε) .
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The coefficients Bs,p ∈ R can iteratively be solved for from the equation

ays(λ) +

K∑
`,m=0

Q`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 y`s(λ)λm +O(|λ|p̄+ε) = 0 , (4.14)

which is (4.13) applied to the solution branch (x0(λ), . . . , xk(λ), y0(λ), y1(λ)).
We now want to show that

y0(λ)− y1(λ) = O(|λ|p̄) (4.15)

for these unique solutions. We will do so by proving for all q ∈ Υ with q < p̄
that

[y0]<q = [y1]<q =⇒ [y0]≤q = [y1]≤q . (4.16)

Note that for q = min(p | p ∈ Υ) we have [y0]<q = [y1]<q = 0. Hence, iterated
use of Implication (4.16) indeed proves Equation (4.15). To show that the
statement in (4.16) holds, we subtract Equation (4.14) for s = 1 from the one
for s = 0, which gives us

a(y0(λ)− y1(λ)) +

K∑
`,m=0

1∑
s=0

(−1)sQ`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 y`s(λ)λm (4.17)

+O(|λ|p̄+ε) = 0 .

Given q ∈ Υ satisfying q < p̄, let q+ denote the smallest element in Υ such that
q+ > q, i.e. q+ is the “next power” to consider. Note that q < p̄ means q+ ≤ p̄
exists. It follows that

0 = a([y0(λ)]≤q − [y1(λ)]≤q)

+

K∑
`,m=0

1∑
s=0

(−1)sQ`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 [ys(λ)]`<qλ
m +O(|λ|q+) .

(4.18)

Here we have used that

Q`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 [ys(λ)]`≤qλ
m (4.19)

=Q`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 [ys(λ)]`<qλ
m +O(|λ|q+) ,

which is clear whenever ` = 0, ` > 1 or m > 0. For (`,m) = (1, 0) it holds
because Q1,0(0) = 0, so that Q1,0 has no constant term and hence

Q1,0

 ⊕
σ∈Ss

k+1

xσ(λ)
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is divisible by λr for r = min(p | p ∈ Υ). We now assume [y0(λ)]<q = [y1(λ)]<q,
so that [ys(λ)]<q = [y0(λ)]<q for both choices of s. Using Lemma 4.4, Equa-
tion (4.18) becomes

0 = a([y0(λ)]≤q − [y1(λ)]≤q)

+

K∑
`,m=0

1∑
s=0

(−1)sQ`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

 [ys(λ)]`<qλ
m +O(|λ|q+)

= a([y0(λ)]≤q − [y1(λ)]≤q)

+

K∑
`,m=0

[y0(λ)]`<qλ
m

1∑
s=0

(−1)sQ`,m

 ⊕
σ∈Ss

k+1

xσ(λ)

+O(|λ|q+)

= a([y0(λ)]≤q − [y1(λ)]≤q)

+

K∑
`,m=0

[y0(λ)]`<qλ
mS`,m(x(λ))

k∏
i,j=0
i>j

(xi(λ)− xj(λ)) +O(|λ|q+) ,

(4.20)

for some polynomials S`,m. As it is clear that

k∏
i,j=0
i>j

(xi(λ)− xj(λ)) = O(|λ|p̄) ,

Equation (4.20) simplifies to

a([y0(λ)]≤q − [y1(λ)]≤q) = O(|λ|q+) .

Using again the assumption that a 6= 0, this indeed gives [y0(λ)]≤q = [y1(λ)]≤q.
By induction, (4.15) holds true as outlined above. It follows that we may

write
y0(λ)− y1(λ) = Eλp̄ +O(|λ|p̄+ε) .

for some E = B0,p̄ − B1,p̄ ∈ R. We next want to show that E 6= 0 generically.
To this end, recall that Bs,p̄ can be solved for from Equation (4.14). In fact,
for fixed values of a 6= 0 and the power series coefficients of each xi(λ), we may
express Bs,p̄ as a polynomial in the coefficients of the various Q`,m. Therefore,
we may likewise express E = B0,p̄ − B1,p̄ as such a polynomial. Now, any
polynomial on a finite dimensional vector space is either identically zero, or
vanishes only on the complement of an open dense set. Therefore, the proof is
complete if we can give at least one response function F for which E 6= 0. To
this end, consider

F (Y,X;λ) = aY + P(k)(X) . (4.21)
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Using Lemma 4.5 we get

0 = F

y0(λ),
⊕

σ∈S0
k+1

xσ(λ), λ

− F
y1(λ),

⊕
σ∈S1

k+1

xσ(λ), λ


= a(y0(λ)− y1(λ)) + P(k)

 ⊕
σ∈S0

k+1

xσ(λ)

− P(k)

 ⊕
σ∈S1

k+1

xσ(λ)


= a(y0(λ)− y1(λ)) +

k∏
i,j=0
i>j

(xi(λ)− xj(λ))

= a(y0(λ)− y1(λ)) +

( k∏
i,j=0
i>j

Di,j

)
λp̄ +O(|λ|p̄+ε) .

(4.22)

Hence, for this particular choice of response function we obtain

E = −1

a

k∏
i,j=0
i>j

Di,j 6= 0 ,

which shows that E is indeed generically non-vanishing.

Finally, as (fN
♦

(−F,G))w = −(fN
♦

(F,G))w for the two nodes w outside the core,

we see that z(λ) is a branch of steady-states for fN
♦

(F,G), if and only if it is for

fN
♦

(−F,G). Equation (4.13) shows that the branch

z(λ) = (x0(λ), . . . , xk(λ), y0(λ), y1(λ)) (4.23)

is stable if x(λ) is for fN(G), and if in addition a < 0. This last condition holds

for either fN
♦

(F,G) or fN
♦

(−F,G), which completes the proof.

Remark 3. The condition that x(λ) is fully synchrony-breaking is really essential
in Theorem 4.2. More precisely, it follows from Remark 2 that if xi(λ) = xj(λ)
for some distinct i, j, then the equations ẏ0 = 0 and ẏ1 = 0 give identical
solutions y0(λ) and y1(λ).

Remark 4. Recall from Remark 1 that we may generalize the definition of an
augmented hypernetwork to allow only hyperedges between the two additional
nodes and a subset S of nodes of the same type of the core. It is clear that
the results of Theorem 4.2 still hold for this construction. More precisely, we
then need a steady-state bifurcation branch in the core that has different com-
ponents for the nodes in S. We may then define the order of asynchrony as
in Definition 4.1, but comparing only states in S. As in Theorem 4.2 we will
then generically have a steady-state bifurcation in a corresponding admissible
vector field for the augmented hypernetwork, with the difference between the
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w-nodes growing in λ raised to the power of the order of asynchrony. Stability of
this branch for the augmented hypernetwork can be guaranteed if the relevant
branch for the core is stable.

5 More examples

In this section, we present three more examples that illustrate Theorem 4.2.

Example 5.1. Consider the augmented hypernetwork shown in Figure 4. Its
admissible ODEs are given by

ẋ0 = G(x0, x1;λ) ,
ẋ1 = G(x1, x0;λ) ,
ẋ2 = G(x2, x2;λ) ,
ẏ0 = F (y0, (x0, x1), (x1, x2), (x2, x0);λ) ,
ẏ1 = F (y1, (x0, x2), (x1, x0), (x2, x1);λ) ,

(5.1)

where F has the usual symmetry properties and where we assume each node to
have a one-dimensional phase space. The grey box in Figure 4 denotes the core
of this hypernetwork, which is a disconnected, classical first-order network, and
whose dynamics corresponds to that of the x-variables in (5.1). Generically, a
one-parameter bifurcation in an admissible system for the core is either given by
the product of two saddle-nodes or by a pitchfork bifurcation. Only the latter
of these involves a fully synchrony-breaking branch, and so we focus on that
case, which we realise by choosing

G(X0, X1;λ) = −X0 −X1 + λX0 −X3
0 . (5.2)

It follows that for λ < 0, the only (stable) steady state branch is given by
x0(λ) = x1(λ) = x2(λ) = 0. For λ > 0 we find (apart from some unstable
branches) two stable, fully synchrony-breaking branches, given by

x0(λ) = −x1(λ) = ±λ1/2, x2(λ) = 0 .

For each of these two latter branches we have

x2(λ)− x0(λ) = ∓λ1/2, x2(λ)− x1(λ) = ±λ1/2,

x1(λ)− x0(λ) = ∓2λ1/2 ,

from which we see that

p̄ =
1

2
+

1

2
+

1

2
=

3

2
.

Hence, for the choice of response function G given by (5.2), Theorem 4.2 predicts
the full system (5.1) to undergo a bifurcation where y0(λ) − y1(λ) ∼ λ3/2 for
λ > 0, for generic choice of F .
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0 1 2

0

1

Figure 4: An augmented hypernetwork with a disconnected core, shown within
the grey box. We have left out self-loops corresponding to self-influence of each
node.

A numerical investigation corroborates this result, see Figure 5. These fig-
ures are obtained using Euler’s method for the system (5.1) with G given by
Equation (5.2) and where we use

F (Y, (X0, X1), (X2, X3), (X4, X5);λ) (5.3)

=− 5Y + 14λ− h(10X0 − 12X1)− h(10X2 − 12X3)− h(10X4 − 12X5)

in which
h(x) = sin(x) + cos(x)− 1 =

√
2 sin(x+

π

4
)− 1 . (5.4)

This function F is chosen to facilitate sufficient non-linearity for the result of
Theorem 4.2 to hold, while also satisfying the required symmetry condition.
We forward integrated the system (5.1) for each of 600 equidistributed values
of λ ∈ [−0.03, 0.03]. For each fixed value of λ, integration was performed up to
t = 5000 with time steps of 0.1, and starting from the point (x0, x1, x2, y0, y1) =
(0.1,−0.2, 0.3, 0.4, 0.5). For the log-log plot of Figure 5c, we instead chose 600
values of λ ∈ [0.0005, 0.03], such that the values of ln(λ) are equidistributed.

Example 5.2. We next turn to the augmented hypernetwork depicted in Fig-
ure 6. The core of this hypernetwork, shown in the grey box, is an example of a
classical (dyadic) network that itself shows reluctant synchrony-breaking. More
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(a) The stable branches of a synchrony-breaking bifurcation.
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(b) The difference between the y-nodes
along the stable branches.
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(c) A log–log plot of the difference be-
tween the y-nodes.

Figure 5: Numerically obtained bifurcation diagram for a system of the form
(5.1), corresponding to the augmented hypernetwork shown in Figure 4. The
black line segment in the log-log plot has fixed slope 3

2 for comparison, indicating

that y0(λ)− y1(λ) ∼ λ 3
2 .
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precisely, admissible systems for this core are of the form

ẋ0 = G(x0, x1, x0;λ) ,
ẋ1 = G(x1, x2, x0;λ) ,
ẋ2 = G(x2, x2, x0;λ) .

(5.5)

These ODEs are special instances of those of the more general form

ẋ0 = H(x0, x1, x0, x1, x2;λ) ,
ẋ1 = H(x1, x2, x0, x1, x2;λ) ,
ẋ2 = H(x2, x2, x0, x1, x2;λ) ,

(5.6)

obtained by setting H(x, y, z, u, v;λ) = G(x, y, z;λ). Alternatively, one may
think of (5.6) as denoting all admissible systems for a network obtained from
the core in Figure 6 by adding six additional arrows. The first three of these
are from node 1 to all nodes in the core (including an additional self-loop for
node 1), and are all of a single, new type. The last three are from node 2 to all
nodes in the core, likewise all of one new type. The reason for adding these new
arrow-types is that we can rigorously compute generic steady state bifurcations
in systems of the form (5.6), using center manifold reduction. See [24] for a
detailed exposition of the techniques used.

For the sake of this example, it is enough to know that in Subsection 7.2
of [24] it is shown that the system (5.6) generically undergoes a steady-state
bifurcation involving a synchrony-breaking branch

x(λ) = (x0(λ), x1(λ), x2(λ))

= (D0λ+O(|λ|2), D1λ+O(|λ|2), D1λ+O(|λ|2)) ,
(5.7)

where
x2(λ)− x1(λ) = D2,1λ

2 +O(|λ|3)) (5.8)

and with D0, D1, D0 − D1, D2,1 6= 0. As this branch diverges from the syn-
chrony space {x1 = x2} at only quadratic leading order, we may again speak of
reluctant synchrony breaking. As opposed to the reluctant synchrony breaking
we have considered in augmented hypernetworks though, the space {x1 = x2} is
actually robust for systems of the form (5.6), and so for the special cases (5.5) as
well. The synchrony-breaking branch (5.7) can furthermore take over stability
from a fully synchronous one as λ increases through zero, see Table 2.1 in [24].
We therefore predict such a bifurcation to occur in the special system (5.5) as
well.

Figure 7 reveals that this is indeed the case. Figure 7a shows the components
of the stable branches for the augmented hypernetwork of Figure 6. However,
as the core is a subnetwork of its augmented hypernetwork, we see that the
x-variables depend only on each other and so depict a bifurcation in the three-
node system (5.5) as well. Figure 7a shows a reluctant separation happening
between the nodes v1 and v2, corresponding to the variables x1 and x2, with
Figures 7b and 7c indicating this occurs as ∼ λ2.

22
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Figure 6: An augmented hypernetwork with a core that itself shows reluctant
synchrony breaking. As before, we have left out self-loops corresponding to
self-influence of each node.

It follows from (5.7) and (5.8) that we have

x2(λ)− x0(λ) ∼ λ, x1(λ)− x0(λ) ∼ λ and x2(λ)− x1(λ) ∼ λ2

so that
p̄ = 1 + 1 + 2 = 4 .

By Theorem 4.2 this implies that the augmented hypernetwork system generi-
cally exhibits the highly reluctant synchrony-breaking asymptotics

y0(λ)− y1(λ) ∼ λ4 .

The numerics in Figures 7d and 7e corroborates this surprising asymptotics –
see in particular the branches corresponding to the y-variables in Figure 7a.

The details of the numerics are the same as for the previous example, except
that time ran until t = 5000 for Figures 7a, 7b and 7d, and until t = 15000 for
Figures 7c and 7e. The response function for the x-variables was chosen to be

G(X0, X1, X2;λ) = −0.55X1 + 0.25X2 + 1.5λX0 − 0.1X2
0 ,

with F given by Equations (5.3) and (5.4).
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Figure 7: Numerically obtained bifurcation diagram for the augmented hy-
pernetwork system shown in Figure 6, whose core is of the form (5.5). The
black line segment in (c) has fixed slope 2 for comparison, indicating that
x2(λ) − x1(λ) ∼ λ2. The black line segment in (e) has fixed slope 4, which
indicates that y0(λ)− y1(λ) ∼ λ4.
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Figure 8: An augmented hypernetwork with a core consisting of a classical feed-
forward network with four nodes, shown within the grey box. We have left
out self-loops corresponding to self-influence of each node. In contrast to the
previous examples, for this hypernetwork we have k + 1 = 4, so that there are
(k + 1)! = 24 hyperedges of order k = 3.

Example 5.3. Finally, we consider the augmented hypernetwork of Figure 8,
which has as its core a classical feed-forward network with four nodes. More
precisely, the nodes in the core evolve according to the ODEs

ẋ0 = G(x0, x1, x2;λ) ,
ẋ1 = G(x1, x2, x3;λ) ,
ẋ2 = G(x2, x3, x3;λ) ,
ẋ3 = G(x3, x3, x3;λ) .

(5.9)

It is known that this system generically supports steady-state bifurcations in
which stability passes from a fully synchronous branch to one in which

x0(λ) ∼ λ1/4 , x1(λ) ∼ λ1/2 and x2(λ), x3(λ), x2(λ)− x3(λ) ∼ λ ,
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see [23] and [25]. This unusually fast rate of synchrony breaking is also referred
to as amplification. It follows that

p̄ =
1

4
+

1

4
+

1

4
+

1

2
+

1

2
+ 1 =

11

4
,

so that Theorem 4.2 predicts a reluctant steady state branch with

y0(λ)− y1(λ) ∼ λ 11
4 .

This unusual growth rate is verified numerically in Figure 9, which was obtained
by numerically integrating the augmented system for

G(X0, X1, X2, λ) = 10X1 − 20X2 + 15λX0 − 100X2
0

and

F

Y, ⊕
σ∈S0

4

Xσ;λ

 = −0.01
∑
σ∈S0

4

h(120Xσ,1 + 40Xσ,2 − 100Xσ,3)− 5Y − λ ,

where Xσ = (Xσ,1, . . . , Xσ,4) ∈ R4 and with h given by Equation (5.4).
Figure 9a shows the components of the stable branches, whereas Figure 9b

is a log-log plot of the difference of the y-components, for positive values of
λ. In this latter picture, the dashed black line segment has fixed slope 11/4,

indicating that indeed y0(λ)− y1(λ) ∼ λ 11
4 . For comparison we also plotted the

dotted black line segment, which has fixed slope 10/4, and which does not fit
as well for low values of λ. Both figures were made by forward integrating the
vector field for the augmented system from the point

(x0, . . . , x3, y0, y1) = (−0.001,−0.002,−0.003,−0.004, 0.001, 0.002)

in phase space, for various values of λ and with time steps of 0.1. For Figure 9a
this was done up to t = 2000 and with 600 equidistant values of λ ∈ [−0.03, 0.03].
For Figure 9b this was up to t = 20000 and for 100 equidistant values of ln(λ) ∈
[ln(0.00003), ln(0.03)].

Remark 5. Example 5.2 shows that even classical (dyadic) networks may gener-
ically support reluctant synchrony breaking bifurcations. However, we are not
aware of any method to design networks that, for instance, break synchrony up
to some prescribed degree in λ. For hypernetworks, the augmented hypernet-
work construction makes this design problem more tractable. In fact, we show
below that one may construct hypernetworks which support generic reluctant
synchrony breaking to arbitrarily high order. We foresee possible applications
of this observation for understanding the phenomenon of homeostasis [26, 27].

To illustrate how one can create hypernetworks with an arbitarily high order
of reluctant synchrony breaking, we return to the five-node augmented hyper-
network of Equation (2.1). In Section 2, we observed that the three-node core of
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Figure 9: Numerically obtained bifurcation diagram for an augmented hyper-
network with core given by a four-node feed-forward network, see Figure 8. The
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4 , whereas the
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4 .
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this hypernetwork supports a steady state branch in which xi(λ) = Diλ+O(|λ|2)
for some mutually distinct Di ∈ R. Using the same notation as in Section 2, we
expand the response function F for the y-nodes as

F (Y, (X0, X1), (X2, X3), (X4, X5);λ)

= aY + bX0 + cX1 + bX2 + cX3 + bX4 + cX5 + dλ

+O(‖(Y,X0, . . . , X5;λ)‖2) ,

(5.10)

and we recall that we found a reluctant steady state branch in the augmented
hypernetwork with asymptotics

y0(λ) =
−(b+ c)(D0 +D1 +D2)− d

a
λ+O(|λ|2) (5.11)

and

y1(λ) =
−(b+ c)(D0 +D1 +D2)− d

a
λ+O(|λ|2) . (5.12)

To this augmented hypernetwork we can now add another node of the same
type as the y-nodes, with corresponding variable y2. We couple it to the nodes
in the core in such a way that

ẏ2 = F (y2, (x0, x1), (x1, x0), (x0, x0), λ) . (5.13)

The aforementioned branch of steady states is then supported by this larger
hypernetwork as well, where in addition

y2(λ) =
−(b+ c)(D0 +D1 +D0)− d

a
λ+O(|λ|2) , (5.14)

as can be seen using Equation (5.10). To summarise, we now have a branch
where the three y-nodes satisfy

y0(λ) = E0λ+O(|λ|2) , y1(λ) = E0λ+O(|λ|2) , (5.15)

y2(λ) = E2λ+O(|λ|2) and y0(λ)− y1(λ) ∼ λp

for some p > 1 (in this particular case p = 3). Moreover, from Equations (5.11),
(5.12) and (5.14) we see that E0 6= E2, as D0 6= D2 by assumption.

We may now use the three y-nodes as the core for another augmented hy-
pernetwork, say by adding two z-nodes of a new type (c.f. Remark 4). We also
add a third z-node, precisely as we did with the third y-node. That is, we set

ż0 = F̃ (z0, (y0, y1), (y1, y2), (y2, y0), λ) ,

ż1 = F̃ (z1, (y0, y2), (y1, y0), (y2, y1), λ) ,

ż2 = F̃ (z2, (y0, y1), (y1, y0), (y0, y0), λ) ,

(5.16)

where F̃ is a response function for the z-nodes. Just as before, we will then find

z0(λ) = E′0λ+O(|λ|2) , z1(λ) = E′0λ+O(|λ|2) , (5.17)
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z2(λ) = E′2λ+O(|λ|2) and z0(λ)− z1(λ) ∼ λp+2

for some generically nonzero E′0, E
′
2 ∈ R. The new power p+ 2 follows from

Theorem 4.2, as

y2(λ)− y0(λ) ∼ λ , y2(λ)− y1(λ) ∼ λ , (5.18)

y0(λ)− y1(λ) ∼ λp ,

which holds because E0 6= E2. We may also argue that E′0 6= E′2 in precisely
the same way that we argued that E0 6= E2.

This shows that by iteratively growing the augmented hypernetwork, we
may increase the order (in λ) of reluctancy of the reluctant steady state branch.
In other words, we may design hypernetworks with an arbitrarily high order
of reluctant synchrony breaking. Concretely, our example shows that we can
arrange for p = 3, 5, 7, . . . . It is also clear from this construction that the
resulting reluctant branch may be assumed stable.
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7 Data availability

The code used to generate the numerical results can be found in [28].
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