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Abstract. Many networked systems are governed by non-pairwise interactions between nodes.
The resulting higher-order interaction structure can then be encoded by means of a hypernetwork.
In this paper we consider dynamical systems on hypernetworks by defining a class of admissible maps
for every such hypernetwork. We explain how to classify robust cluster synchronisation patterns on
hypernetworks by finding balanced partitions, and we generalise the concept of a graph fibration
to the hypernetwork context. We also show that robust synchronisation patterns are only fully
determined by polynomial admissible maps of high order. This means that, unlike in dyadic networks,
cluster synchronisation on hypernetworks is a higher-order, i.e., nonlinear effect. We give a formula,
in terms of the order of the hypernetwork, for the degree of the polynomial admissible maps that
determine robust synchronisation patterns. We also demonstrate that this degree is optimal by
investigating a class of examples. We conclude by displaying how this effect may cause remarkable
synchrony breaking bifurcations that occur at high polynomial degree.

1. Introduction.
Summary of the main results. Recent advances in applications ranging from

physics (coupled oscillator networks) over ecology (species interaction models) to so-
cial sciences (social interaction models) have indicated that, instead of by pairwise
interactions, ensemble dynamics of networked real-world systems are frequently driven
by simultaneous interactions of groups of network agents, so-called higher-order in-
teractions [6, 26, 28]. While examples of these structural aspects have been exploited
in theoretical (mathematical) studies as well, a unifying framework that defines cou-
pled dynamical systems corresponding to a higher-order hypergraph structure is still
largely lacking. Consequently, this paper

• generalises the concepts of coupled cell networks (Definition 2.1), admissible
maps and vector fields (Definition 2.4), graph fibrations (Definition 3.1) and
quotient networks (Definition 3.7), and studies the properties of these gener-
alisations to define, manipulate, and analyse coupled dynamical systems on
hypergraphs;

• demonstrates that, unlike in classical (dyadic) networks, cluster synchronisa-
tion on hypernetworks is determined by higher-order terms in the equations
of motion, and is thus a purely nonlinear effect (Section 4 and Section 5).
We provide a precise expression for the polynomial degree at which cluster
synchronisation is determined (Theorem 4.1) and show by means of examples
that a lower polynomial degree is in general not sufficient (Theorem 5.4).

The relation between this paper and the existing concepts mentioned under the first
bullet point, shall be made more precise in the background section below. Here,
we would like to point out that the main result mentioned under the second bullet
point distinguishes hypernetwork dynamical systems from classical (dyadic) network
dynamical systems, where cluster synchronisation is known to be completely deter-
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mined by the linear terms in the equations of motion [23, 4]. As far as we know, this is
one of the first examples of a dynamical phenomenon that is fundamentally different
in hypernetworks than in classical networks. Furthermore, we show numerically in
Section 5 that this phenomenon leads to a remarkable new type of bifurcations. A
systematic analytical investigation of this type of bifurcation will be presented in a
separate paper. We begin by presenting an example.
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Figure 1: The left figure depicts the hypernetwork that yields equations as in (1.1).
The colouring encodes the distinct inputs of each hyperedge, while the arrows specify
their targets. We define hypernetworks in Definition 2.1. Replacing each hyperedge
by two edges yields the network on the right, with governing equations as in (1.5).
The classical network and the hypernetwork have different robust synchrony spaces.

Example 1.1. Consider the differential equations

ẋ0 = G(x0), ẋ1 = G(x1), ẋ2 = G(x2),

ẏ0 = F (y0, (x0, x1), (x1, x2), (x2, x0)) ,

ẏ1 = F (y1, (x0, x2), (x1, x0), (x2, x1)) ,

(1.1)

for x0, x1, x2, y0, y1 ∈ R. We require that the function F : R × R2 × R2 × R2 → R
satisfies the invariance equations

F (Y, (X0, X1), (X2, X3), (X4, X5)) =

F (Y, (X2, X3), (X0, X1), (X4, X5)) =

F (Y, (X0, X1), (X4, X5), (X2, X3)) .

(1.2)

In other words, the three pairs of X-inputs of F can be exchanged without changing
the value of F (this is why we emphasize pairs of variables among the arguments of F
using additional brackets). We make no assumptions on the function G : R→ R. As
a result of (1.2), we may think of the cells with states y0 and y1 as being targeted by
three identical hyperedges of order two. The hypernetwork that encodes the structure
of equations (1.1) is depicted in the left panel of Figure 1.

Synchronisation occurs when groups of cells in the system evolve synchronously.
Note for example that substituting x0 = x1 = x2 and y0 = y1 in (1.1) yields that
ẋ0 = ẋ1 = ẋ2 and ẏ0 = ẏ1. This implies that the synchrony space

{x0 = x1 = x2 and y0 = y1}

is invariant under the flow of any ODE of the form (1.1). The (larger) subspace
{y0 = y1}, on the other hand, is not. Choosing for instance

F (Y, (X0, X1), (X2, X3), (X4, X5)) = X0X
2
1 +X2X

2
3 +X4X

2
5
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—which satisfies (1.2)— we find that

ẏ0 = x0x1
2 + x1x2

2 + x2x0
2 while ẏ1 = x0x2

2 + x2x1
2 + x1x0

2 .

Generically, we will thus have that ẏ0 6= ẏ1 when y0 = y1, i.e., the synchrony space
{y0 = y1} is not flow-invariant for this F .

Note that the function F that we chose here is nonlinear. To see why this is
important, note that any linear F satisfying (1.2) is of the form

F (Y, (X0, X1), (X2, X3), (X4, X5))

= aY + bX0 + cX1 + bX2 + cX3 + bX4 + cX5 .
(1.3)

For such F , we see from (1.1) that

ẏ0 = ay0 + (bx0 + cx1) + (bx1 + cx2) + (bx2 + cx0) ,
ẏ1 = ay1 + (bx0 + cx2) + (bx1 + cx0) + (bx2 + cx1) .

It is easy to see that the right hand sides of these ODEs are equal when y0 = y1,
and therefore the synchrony space {y0 = y1} is flow-invariant whenever F is linear.
Perhaps surprisingly, we conclude that linear systems of the form (1.1) have more
flow-invariant synchrony spaces than general nonlinear ones.

One way to understand this phenomenon is to observe from (1.3) that any linear
F satisfying (1.2) automatically satisfies the stronger invariance equations

(1.4)

F (Y,X0, X1, X2, X3, X4, X5) =
F (Y,X2, X1, X0, X3, X4, X5) =
F (Y,X0, X1, X4, X3, X2, X5) =
F (Y,X0, X3, X2, X1, X4, X5) =
F (Y,X0, X1, X2, X5, X4, X3) .

This in turn means that any linear system of the form (1.1) is automatically an
admissible system for the (classical) coupled cell network shown in the right panel
in Figure 1. This network has been constructed by replacing each hyperedge of the
original hypernetwork by two edges. The admissible ODEs of this classical network
are of the form

ẋ0 = G(x0), ẋ1 = G(x1), ẋ2 = G(x2),

ẏ0 = F (y0, x0, x1, x1, x2, x2, x0) ,

ẏ1 = F (y1, x0, x2, x1, x0, x2, x1) ,

(1.5)

with F satisfying (1.4). One quickly checks that the synchrony space {y0 = y1} is
invariant under the flow of all systems of the form (1.5).

Background. Systems of interacting dynamical units are prevalent in nature,
whether it is the coordinated activity of neurons in the brain, interacting species in
ecology, or opinion building in social networks. To investigate interconnected systems
mathematically, one studies network dynamical systems—coupled (nonlinear) maps or
differential equations that describe individual units and their interactions. These sys-
tems behave vastly different from systems without an underlying connection structure
with some of the most striking phenomena being (cluster) synchronisation—some or
all cells evolve identically—and unusual bifurcation behaviour.

A prominent method to define dynamical systems that respect network struc-
ture is the groupoid formalism developed by Golubitsky, Stewart, and collaborators
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[18, 19], and Field [15]. It allows to translate structural features of the network into
dynamical properties using algebraic tools that can be summarized using the language
of graph fibrations [13] and quiver representations [33]. Key results in this field include
the classification of robust patterns of synchrony—i.e., dynamically invariant, inde-
pendent of the governing functions; compare to Example 1.1—which are determined
by linear systems (e.g. [3, 4, 5, 23, 25, 38]), the classification of generic bifurcations
in terms of the network structure (e.g. [2, 17, 24, 32, 37]), as well as insights into real
world problems (e.g. [14, 20, 22]) with no claim of this list being complete.

In recent years, there has been growing interest in the effect of simultaneous non-
linear interactions between three or more units—commonly referred to as higher-order
interactions—on the network dynamics. This has been ignited by developments in
various disciplines: For example in neuroscience, one observes that the signal of one
neuron activates or inhibits the communication channel between two other ones (cf.
[6]). In ecology, the simultaneous competition for resources of multiple species leads
to nonstationary fluctuations of species abundancies typically observed in ecological
networks of competing species (cf. [26]). In social sciences, multi-agent interactions
can lead to a change of the average opinion in consensus dynamics (cf. [28]). More-
over, recent results show that higher-order interactions can emerge from data-driven
model reconstruction, even when the original system is a pairwise coupled network (cf.
[30]). These advances suggest that also in the mathematical investigation the underly-
ing structures be sharpened to hypernetworks represented by hypergraphs (Figure 1).
Significant progress has been made in that regard. However, most investigations have
studied individual examples or specific physical systems (see for example the excellent
surveys [8, 9, 34, 39] and references therein).

From a theoretical perspective, a major obstacle to gauging the impact of higher-
order interactions stems from the fact that the existing approaches to define network
dynamical systems are either not well suited to incorporate or simply do not contain
higher-order interactions at all: e.g., the groupoid formalism incorporates arbitrary
group-interactions generically, while application inspired systems frequently rely on
pairwise interactions only, for example by imposing additive input structure. Addi-
tionally, in the existing literature it is not always clear how the higher-order interac-
tions enter or shape the equations and different authors use different conventions. A
comprehensive, unifying formalism to define admissible dynamical systems that re-
spect the structure of a given hypernetwork is necessary. First approaches have been
made only very recently and allowed for intriguing results. We want to highlight two
main lines of work. One approach has been to investigate hypernetworks with an addi-
tive input structure (cf. [1, 11, 16, 27, 35, 36]). On the other hand, the investigation of
simplicial complexes—i.e., hypergraphs with additional structural properties—allows
for analytic results (cf. [12, 29]). In both cases, there are tools to determine how the
higher-order network structure shapes dynamics, e.g. in the form of robust cluster
synchrony as well as in structure-dependent stability properties.

The goal of this paper is to take a more general stance in the sense that we
consider directed hypergraphs or hypernetworks (which are more general than simpli-
cial complexes) and define admissible maps and vector fields without the restriction
to additive input structure. In particular, we generalise the groupoid formalism to
hypernetworks and exploit this generalisation to characterise and understand synchro-
nisation in the hypernetwork context. Our result that cluster synchrony is a nonlinear
effect further sets our construction apart from the approaches to hypernetwork dy-
namics mentioned above. While [1, 29, 35, 36] also prove that robust synchrony
patterns are characterized by so-called balanced partitions, nonlinearity in the equa-



HYPERNETWORKS: CLUSTER SYNCHRONISATION IS A HIGHER-ORDER EFFECT 5

tions of motion is either not necessary or not further investigated in their respective
formalisms. In fact, in [1] robust patterns of synchrony are determined at linear degree
by using the classical dyadic result, as the hypergraphs in [1] can be identified with
a suitable bipartite dyadic graph. A modification of this identification is also used in
[35, 36] to determine robust synchrony patterns in an algorithmic manner. References
[11, 12, 16, 27] mentioned above do not address cluster synchrony, but instead focus
on full synchronisation.

We believe that the formalism presented in this paper constitutes another step
towards successfully modelling real world networked systems. Our theoretical results
would moreover explain, or even predict unexpected behaviour in these systems. For
example, modelling an opinion formation process according to this formalism allows
to determine all robust patterns of synchrony. These, in turn, might explain the newly
observed average opinion or even the occurrence of multiple opposing opinions that
are shared by groups of agents.

Structure of the article. This article is structured as follows. In Section 2, we
introduce hypernetworks and their admissible maps as well as balanced partitions
and robust synchrony subspaces. In Section 3, we relate balanced partitions to hy-
pergraph fibrations and quotient hypernetworks. In Section 4, we characterise robust
cluster synchrony in terms of balanced partitions, and we give a polynomial degree
at which cluster synchronisation is determined. Finally, Section 5 presents a class of
examples that show that the polynomial degree at which cluster synchronisation is
determined, found in Section 4, is optimal. We conclude Section 5 with an example of
highly unusual bifurcation behavior in a hypernetwork system, in which steady-state
branches break synchrony only up to high order in the bifurcation parameter.

Acknowledgement. We thank Martin Golubitsky and Ian Stewart for enlightening
discussions.

2. Hypernetworks and their admissible maps. In this section, we formalise
the idea that hypernetworks can encode the structure of the interactions between dy-
namical variables. Before introducing dynamics on hypernetworks, we first define
hypernetworks as a type of directed hypergraph. Of course, the concept of the struc-
ture of a hypergraph is not new, see [7] for a recent survey.

Definition 2.1. A hypernetwork is a tuple N = (V,H, s, t) in which V is a finite
set of vertices and H is a finite set of hyperedges. The map s assigns to each hyperedge
a finite ordered list of source vertices s(h) = (s1(h), . . . , sk(h)) ∈ V k. The length k
of s(h) is called the order of h, and the order of the hypernetwork is the maximum of
the order of its hyperedges. The map t : H → V assigns to each hyperedge a unique
target vertex.

In addition, all vertices and hyperedges are assigned a type (chosen from some
finite set), such that

1. if two hyperedges h1, h2 ∈ H have the same type, then they have equal order.
Moreover, their sources si(h1) and si(h2) have the same type for each i =
1, . . . , k (where k is the order of h1 and h2), and their targets t(h1) and t(h2)
have the same type;

2. if two vertices v1, v2 ∈ V have the same type, then there is a type-preserving
bijection α : t−1(v1)→ t−1(v2) between the hyperedges that target v1 and v2.

A subset of vertices V ′ ⊂ V such that s(h) ∈ (V ′)k for all h ∈ H with t(h) ∈ V ′

together with hyperedges H ′ = {h ∈ H | t(h) ∈ V ′} defines a sub-hypernetwork of N,
N′ = (V ′, H ′, s|H′ , t|H′). We write N′ @ N.
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Remark that a single vertex could act multiple times as a source of a hyperedge h,
while it could also act as a source of multiple hyperedges. These properties are not
standard in the literature, but they guarantee that quotients (that will be defined in
Section 3) of hypernetworks are hypernetworks as well.

Definition 2.1 generalises the definition of a coupled cell network as in the groupoid
formalism. In fact, a coupled cell network is simply a hypernetwork in which every
hyperedge has order one (cf. Def. 5.1 in [19]). Our generalisation formalises the idea
that, when the hyperedges h1 and h2 have the same type, then the source vertices
s(h1) = (s1(h1), . . . , sk(h1)) together influence the target vertex t(h1) through the
hyperedge h1, in exactly the same way as the source vertices s(h2) impact the target
vertex t(h2) through the hyperedge h2.

Example 2.2. The left panel of Figure 1 depicts a hypergraph with 5 vertices of
two types. It contains 5 hyperedges of order 1 of two types that each form a self-loop
on one of the vertices. Additionally, it contains 6 equal-type hyperedges of order two,
with two cells of the first type as sources, and a cell of the second type as target. This
example (and its generalisations) will appear at various places in this paper.

Example 2.3. Figure 2 displays a hypernetwork with 5 vertices. Vertices v0, v1 and
v2 are of the same type and form a classical first-order network: they are targeted
only by edges. Vertices w0 and w1 are also of the same type and each receive one edge
(from themselves; not depicted) and three equal-type hyperedges of order 2. Both
inputs of these hyperedges are taken from v0, v1 and v2.

We are now ready to define hypernetwork dynamical systems in terms of the admissible
maps for the hypernetwork. For a hypernetwork of order one, one recovers admissible
maps for a coupled cell network (cf. Def. 6.1 in [19]).

Definition 2.4. Let N = (V,H, s, t) be a hypernetwork. Assume that for every
v ∈ V an internal phase space Rnv is given in such a way that nv1 = nv2 whenever v1
and v2 are of the same vertex-type. That is, vertices of the same type have identical
internal phase spaces. A map or vector field

f :
⊕
v∈V

Rnv →
⊕
v∈V

Rnv

defined on the total phase space
⊕

v∈V Rnv is called N-admissible if it is of the form

fv(x) = Fv

 ⊕
h : t(h)=v

xs(h)


for some response function Fv. Here we write

xs(h) = (xs1(h), . . . , xsk(h)) ∈ Rns1(h) ⊕ . . .⊕ Rnsk(h)

for the ordered list of source variables of h, and⊕
h : t(h)=v

xs(h) ∈
⊕

h : t(h)=v

(Rns1(h) ⊕ . . .⊕ Rnsk(h))

for the list of all the input variables of Fv. We furthermore require that the Fv satisfy
the following invariance condition: if α : t−1(v1) → t−1(v2) is any hyperedge-type-
preserving bijection between the targeting hyperedges of two vertices of the same type,
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then

(2.1) Fv2

 ⊕
t(h2)=v2

xs(h2)

 = Fv1

 ⊕
t(h1)=v1

xs(α(h1))

 .

Remark 2.5. The invariance condition (2.1) states that the evolution of two ver-
tices of the same type depends “in the same way” on the state of the sources of any
equal-type hyperedges targeting them. The condition can also be seen as a local sym-
metry property for the admissible vector field. For example, consider the situation
where v ∈ V is targeted by two hyperedges of the same type h1 and h2. This implies
that there is a bijection between the targeting hyperedges of v that exchanges h1 and
h2 (and keeps all other hyperedges fixed). Equation (2.1) with v1 = v2 = v then
states that Fv is invariant under the exchange of xs(h1) and xs(h2).

0 1 2

0

1

Figure 2: A hypernetwork that contains 3 cells of the same type that form a classical
first-order subnetwork. The 2 additional square cells are targeted by 3 hyperedges
of order 2 each, which only have cells of the subnetwork as sources. In contrast to
Figure 1, we have left out the self-loop edges corresponding to the first entries of the
governing functions in (2.2).

Example 2.6. The general admissible ODE for the hypernetwork in Figure 2 is

ẋ0 = G(x0, x0, x0), ẋ1 = G(x1, x1, x0), ẋ2 = G(x2, x1, x2),

ẏ0 = F (y0, (x0, x1), (x1, x2), (x2, x0)) ,

ẏ1 = F (y1, (x0, x2), (x1, x0), (x2, x1)) .

(2.2)

Here, x0, x1, x2 are the variables describing the state of the cells of the first type
(circular) while y0, y1 determine the states of cells of the second type (square). The
ODE is admissible precisely when

(2.3)
F (Y0, (X0, X1), (X2, X3), (X4, X5)) =
F (Y0, (X2, X3), (X0, X1), (X4, X5)) =
F (Y0, (X2, X3), (X4, X5), (X0, X1)) .

This means that the three pairs of input states of F can be arbitrarily permuted.

Remark 2.7. In our definition, hyperedges are directed and target precisely one
cell. However, hypergraphs that do not satisfy these conventions can often be repre-
sented as well. For instance, a hyperedge with multiple targets can be considered as
multiple hyperedges with one target which all have the same source vertices. Similarly,
an undirected hyperedge can be considered as the collection of all possible directed
hyperedges connecting the involved vertices (see Figure 3).
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Figure 3: An undirected hyperedge between three vertices can be regarded as the
union of 27 directed hyperedges of degree 2. Inspired by Figure 1 in [16].

In the remainder of this section, we describe balanced partitions and synchrony sub-
spaces in hypernetwork systems. Consider a partition P = {V1, . . . , VC} (also called
colouring) of the vertices V of a hypernetwork N with the property that whenever
v1, v2 ∈ Vc are in the same element of the partition, then they are of the same vertex-
type. We can then define the polysynchrony space

SynP := {xv1 = xv2 when v1, v2 are in the same element of P } ,(2.4)

on which the states of two vertices are synchronised when these vertices belong to
the same element of the partition P . When the polysynchrony space is dynamically
invariant for any N-admissible map, we say it is robust.

In Definition 2.8 we define what it means for a partition to be balanced. This
notion can be read as the partition being compatible with the hypernetwork struc-
ture, and it is the obvious generalisation of the corresponding notion for coupled cell
networks (cf. Def. 7.1 in [19]). Theorem 4.1 in Section 4 below states that a partition
of the cells is balanced if and only if SynP is robust.

Definition 2.8. A partition P = {V1, . . . , VC} of the vertices in a hypernetwork
N is balanced if for all v1, v2 ∈ Vc in the same element of the partition we have

1. v1 and v2 have the same vertex-type, i.e., P is a refinement of the partition
into vertex-types;

2. there is a hyperedge-type-preserving bijection α : t−1(v1) → t−1(v2) such
that for every hyperedge h1 ∈ t−1(v1) of order k and every source index
1 ≤ i ≤ k, the sources si(h1), si(α(h1)) ∈ Vd are also in the same element of
the partition.

Example 2.9. In Example 2.3, the partition P = {v0, v1, v2} ∪ {w0, w1} of the
vertices in the hypernetwork is balanced. As a matter of fact, all vertices v0, v1, v2
receive (hyper-)edges from some vi, which are all in the same element of the partition.
Similarly, the vertices w0, w1 receive one edge from themselves, which are in the same
element of the partition, and three hyperedges of order 2 with source vertices vi, vj ,
which are also all in the same element of the partition. In fact, P is the partition into
vertex types, which is balanced for any hypernetwork.

In accordance with Theorem 4.1 in Section 4 below, one observes from the equa-
tions presented in Example 2.6 that the cluster synchrony space

SynP = {x0 = x1 = x2 and y0 = y1}
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for this partition is flow-invariant for any admissible map, i.e., it is robust. In contrast,
the (larger) space {y0 = y1} is not invariant under every admissible map. In fact, the
partition {v0} ∪ {v1} ∪ {v2} ∪ {w0, w1} is not balanced, as w0 and w1 are targeted by
hyperedges whose ordered inputs come from different elements in the partition.

3. Hypergraph fibrations. In the context of classical networks—i.e., hyper-
networks of order 1—, it is well known that the dynamics restricted to a robust
synchrony subspace is that of a network as well, which is called the quotient network
(see [38, 15, 23, 19]). It arises by collapsing synchronous vertices to a single one and
attaching arrows consistent with the original network—a construction for which it is
essential that the partition is balanced. It was shown more recently, that this result
is an instance of so-called graph fibrations, which were introduced in [10]. These are
morphisms of the underlying graphs that induce linear maps sending solutions of one
network dynamical system to solutions of another network dynamical system [13].
The goal of this section is to generalise this concept to hypernetworks.

We begin by defining hypergraph fibrations (instead of hypernetwork fibrations
to highlight the generalisation of graph fibrations). The definition generalises the one
for classical networks, that is, hypernetworks of order one (cf. Def. 4.1.1 in [13] and
Def. 4.2 in [31]).

Definition 3.1 (Hypergraph fibration). Let φ : N→ N′ be a map between two
hypernetworks N = (V,H, s, t) and N′ = (V ′, H ′, s′, t′) such that

1. φ sends vertices to vertices, i.e., φ(v) ∈ V ′ for all v ∈ V ;
2. φ sends hyperedges to hyperedges, i.e., φ(h) ∈ H ′ for all h ∈ H;
3. φ preserves the types of vertices and hyperedges, i.e, φ(v) and v as well as

φ(h) and h are of the same type respectively for all v ∈ V and h ∈ H;
4. φ sends the source vertices s(h) ∈ V k of a hyperedge h ∈ H to the source

vertices s′(φ(h)) ∈ (V ′)k of its image φ(h) ∈ H ′ and respects their order, i.e.,
s′(φ(h)) = (s′1(φ(h)), . . . , s′k(φ(h))) = (φ(s1(h)), . . . , φ(sk(h)));

5. φ sends the unique target vertex of a hyperedge to the unique target vertex of
its image, i.e., t′(φ(h)) = φ(t(h)) for all h ∈ H;

6. and for every vertex v ∈ V , the restriction φ|t−1(v) : t−1(v)→ (t′)−1(φ(v)) is
a type-preserving bijection of hyperedges.

Then φ is called a hypergraph fibration or a fibration of hypernetworks.

Remark 3.2.
1. Note that 4. is well-defined since hyperedges of the same type have the same

order. In particular, the existence of a hypergraph fibration φ : N → N′

implies that the order of N′ is equal to or greater than the order of N (note
that the order of N′ may be strictly larger than that of N if φ is not surjective.)

2. Point 6. is also referred to as the fibration property of the map φ.

Example 3.3. Let N be the hypernetwork in Figure 2 from our running example
(Example 2.3). Furthermore, consider the second hypernetwork N′ as depicted in
Figure 4. Any map φ : N→ N′ that sends the three circular vertices v0, v1 and v2 to
the circular vertex v0, the two square vertices w0 and w1 to the square vertex w0, all
light grey and grey hyperedges of order 1 to the light grey and grey hyperedges of
order 1 respectively, the 3 purple hyperedges of order 2 that target the square vertex
w0 bijectively to the 3 purple hyperedges of order 2, and the 3 purple hyperedges
of order 2 that target the square vertex w1 bijectively to the 3 purple hyperedges of
order 2, is a hypergraph fibration.

The key result of [13] (Thm. 4.3.1) relating graph fibrations to dynamical systems
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0 0

Figure 4: A hypernetwork N′ that contains 2 vertices of different types, 2 hyperedges
of order 1 (classical edges) and 3 hyperedges of order 2. There is a (surjective)
hypergraph fibration mapping from the hypernetwork N in Figure 2 to N′. Therefore,
we call N′ a quotient of N. As before, we have left out self-loops corresponding to
self-influence of each cell.

translates to the hypergraph context almost immediately.

Theorem 3.4. Let N = (V,H, s, t) and N′ = (V ′, H ′, s′, t′) be two hypernet-
works and φ : N → N′ a hypergraph fibration. Furthermore, let fN :

⊕
v∈V Rnv →⊕

v∈V Rnv and fN
′
:
⊕

v′∈V ′ Rnv′ →
⊕

v′∈V ′ Rnv′ be admissible maps for N and N′

respectively. That is, they are defined by

fNv

(⊕
w∈V

xw

)
= Fv

 ⊕
h : t(h)=v

xs(h)

 and(3.1)

fN
′

v′

( ⊕
w′∈V ′

xw′

)
= F ′v′

 ⊕
h′ : t′(h′)=v′

xs′(h′)

 ,(3.2)

where

xs(h) =
(
xs1(h), . . . , xsk(h)

)
and xs′(h′) =

(
xs′1(h′), . . . , xs′k′ (h

′)

)
.

Assume that the internal dynamics of vertices v ∈ V and v′ ∈ V ′ of the same type
are governed by the same function, i.e., for every hyperedge-type-preserving bijection
α : t−1(v)→ (t′)−1(v′) it holds that

(3.3) Fv

 ⊕
h : t(h)=v

xs′(α(h))

 = F ′v′

 ⊕
h′ : t′(h′)=v′

xs′(h′)

 .

Then the linear map Rφ :
⊕

v′∈V ′ Rnv′ →
⊕

v∈V Rnv defined by

(3.4) Rφ

(⊕
v′∈V ′

xv′

)
=
⊕
v∈V

xφ(v)

is a semiconjugacy between the admissible maps, that is,

Rφ ◦ fN
′

= fN ◦Rφ.

In particular, Rφ sends solution curves of ẏ = fN
′
(y) on

⊕
v′∈V ′ Rnv′ to solution

curves of ẋ = fN(x) on
⊕

v∈V Rnv .

Proof. The proof is almost identical to that in [13] and follows by filling in the
suitable definitions and assumptions from the theorem. One computes

(
fN ◦Rφ

)( ⊕
w′∈V ′

xw′

)
= fN

(⊕
w∈V

xφ(w)

)
(3.5)
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=
⊕
v∈V

fNv

(⊕
w∈V

xφ(w)

)
(3.6)

=
⊕
v∈V

Fv

 ⊕
h : t(h)=v

 ⊕
w :w∈s(h)

xφ(w)

(3.7)

=
⊕
v∈V

Fv

 ⊕
h : t(h)=v

 ⊕
w′ :w′∈s′(φ(h))

xw′

(3.8)

=
⊕
v∈V

Fv

 ⊕
h : t(h)=v

xs′(φ(h))

(3.9)

=
⊕
v∈V

F ′φ(v)

 ⊕
h′ : t′(h′)=φ(v)

xs′(h′)

(3.10)

= Rφ

⊕
v′∈V ′

F ′v′

 ⊕
h′ : t′(h′)=v′

xs′(h′)

(3.11)

=
(
Rφ ◦ fN

′
)( ⊕

w′∈V ′
xw′

)
(3.12)

We list the reasoning behind each equality:
(3.5): by definition of Rφ (3.4),
(3.6): by definition of admissibility,
(3.7): by (3.1),
(3.8): by 4. of Def. 3.1,
(3.9): by definition of xs′(h′),

(3.10): by (3.3), since v and φ(v) are of the same type and φ|t−1(v) : t−1(v) →
(t′)−1(v′) is a hyperedge-type-preserving bijection,

(3.11): by definition of Rφ (3.4),
(3.12): by (3.2).

Remark 3.5.
1. Condition (3.3) is well-defined. Vertices of the same type have the same

internal phase space and hyperedge-type-preserving bijections α : t−1(v) →
(t′)−1(v′) for v and v′ of the same type exist due to the local symmetry
property (2.1) and the fibration property (6.) in Definition 3.1 of φ.

2. We remark without further explanation that Theorem 3.4 allows to extend
the methods in [33] (to encode network structure by means of quiver repre-
sentations) to hypernetworks.

Example 3.6. We apply Theorem 3.4 to the hypergraph fibration in Example 3.3.
The admissible vector field for N is given by the right hand side of (2.2). Condi-
tion (3.3) implies that the N′-admissible vector field is

fN
′
(x0, y0) =

(
G(x0, x0, x0)

F (y0, (x0, x0), (x0, x0), (x0, x0))

)
.

The linear map Rφ (for any choice of φ) is defined as

Rφ(x0, y0) = (x0, x0, x0, y0, y0)T
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and it indeed semi-conjugates fN and fN
′
.

Hypergraph fibrations can be used to encode structural properties of a hypernetwork
(for details in the context of classical networks consult [33]). For example, it can
readily be checked that N′ = (V ′, H ′, s′, t′) is (more precisely, can be identified with)
a sub-hypernetwork of N = (V,H, s, t) if and only if the inclusion ι : V ′ → V extends
to an injective hypergraph fibration ι : N′ → N identifying s′ and t′ with s and t,
respectively. The linear map Rι :

⊕
v∈V Rnv →⊕

v∈V ′ Rnv is then the projection

Rι

(⊕
v∈V

xv

)
=
⊕
v∈V ′

xι(v) =
⊕
v∈V ′

xv.

Surjective hypergraph fibrations are more interesting for our considerations. As in
the context of classical networks, these correspond to balanced partitions (cf. Def. 5.6
in [33], Lem. 5.1.1 in [13] and Thms. 7.2 and 9.2 in [19]).

Definition 3.7 (Quotient hypernetwork). Let N,N′ be two hypernetworks. If
there exists a surjective hypergraph fibration φ : N → N′, then we call N′ a quotient
hypernetwork (or simply a quotient) of N.

Proposition 3.8. Let N be a hypernetwork and N′ a quotient of N corresponding
to the surjective hypergraph fibration φ : N→ N′. Then the polydiagonal

Synφ := {xv1 = xv2 when φ(v1) = φ(v2)}

is a robust synchrony subspace of N. Furthermore, any robust synchrony subspace
arises in this way.

Remark 3.9. The second part of the proposition depends on the more involved
Theorem 4.1 in Section 4 below from which we only use the result that robust syn-
chrony implies that the corresponding partition is balanced.

Proof. The first statement follows as a corollary from Theorem 3.4: the linear
map Rφ as defined in (3.4) is an embedding of the total phase space of N′ into the
total phase space of N whose image is the synchrony subspace Synφ. Due to the

semiconjugacy we find that Synφ is robust, since for any admissible map fN

fN
(
Synφ

)
= fN

(
Rφ

(⊕
v′∈V ′

Rnv′
))

= Rφ

(
fN
′

(⊕
v′∈V ′

Rnv′
))
⊂ Rφ

(⊕
v′∈V ′

Rnv′
)
⊂ Synφ .

Conversely, assume Syn is a robust synchrony subspace of N—i.e., it is de-
fined by equality of the coordinates corresponding to certain vertices—and let P =
{V1, . . . , VC} be the corresponding partition of V , which is balanced due to Theo-
rem 4.1 below. We have that v1 and v2 are in the same element of the partition if and
only if xv1 = xv2 holds throughout Syn, and we have that Syn = SynP – recall that
SynP was defined in (2.4). We construct a quotient N′ and a surjective hypergraph
fibration φ : N → N′. The set of vertices is given by the elements of the partition
V ′ = P and we assign the type of v to Vi for any v ∈ Vi—this is well-defined, since
P refines the partition into vertex types. Then we set φ(v) = Vi whenever v ∈ Vi so
that φ is surjective. Next, let v1, . . . , vC be a set of representatives of P . For each
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vi and each h ∈ t−1(vi) we add a hyperedge h′ of the same type to H ′ such that
t′(h′) = Vi and the inputs s′(h′) = (s′1(h′), . . . , s′k(h′)) are defined by s′j(h

′) = Vl,

when sj(h) ∈ Vl. To define φ on hyperedges let v ∈ Vi and α : t−1(v) → t−1(vi) be
the hyperedge-type-preserving bijection from Definition 2.8. For any h ∈ t−1(v), we
define φ(h) to be the hyperedge h′ constructed above from α(h), which targets the
representative vi. This construction is well-defined: sj(h) and sj(α(h)) are in the
same element of P for all 1 ≤ j ≤ k, since the partition is balanced. Furthermore,
one may readily check that φ is indeed a hypergraph fibration.

It remains to check that N′ realizes the synchrony space, i.e., that Synφ = SynP .
This follows immediately from the fact that, by construction, φ(v1) = φ(v2) if and
only if v1 and v2 are in the same element of the partition P .

In combination with Theorem 3.4, we immediately obtain

Corollary 3.10. Let N′ be a quotient of N under the surjective hypergraph fi-
bration φ : N → N′. The dynamics of an N-admissible vector field restricted to the
robust synchrony subspace Synφ is given by an N′-admissible vector field.

Example 3.11. Any hypergraph fibration in Example 3.3 is surjective. Hence, N′

as depicted in Figure 4 is a quotient of N as depicted in Figure 2. It corresponds to
the synchrony subspace {x0 = x1 = x2 and y0 = y1} as in Example 2.9.

4. Balanced partitions and robust synchrony. In the previous section we
have shown that robust synchrony uniquely corresponds to surjective graph fibrations.
In this section, we provide another characterization. Theorem 4.1 is the main result
regarding robust synchrony in hypernetworks, generalising the well-known result for
network dynamical systems which states that balanced partitions correspond to robust
synchrony. However, the result for hypernetworks is more subtle than the result
for networks: which synchrony spaces are robust is not determined by the linear
admissible maps, but by higher order polynomial admissible maps. For networks (i.e.
hypernetworks of order k = 1) Theorem 4.1 reduces to the aforementioned well-known
result (cf. Thm. 7.2. in [19] and Cor. 2.11 in [4]). In what follows, we fix internal
phase spaces Rnv for each of the nodes.

Theorem 4.1. Let N = {V,H, s, t} be a hypernetwork and P = {V1, . . . , VC} a
partition of V that refines the partition into vertex-types. As above, define

SynP := {xv1 = xv2 when v1, v2 are in the same element of P } .

The following are equivalent:
i) The partition P is balanced.

ii) SynP is invariant under any N-admissible map, i.e., it is robust.
iii) SynP is invariant under any polynomial N-admissible map of degree at most

k(k+1)
2 , where k is the order of the hypernetwork.

We split the proof of Theorem 4.1 into two main parts. The first part deals with the
implication i) =⇒ ii) and is relatively straightforward and similar to the proof for
dyadic networks. Note that the implication ii) =⇒ iii) is trivial. The second part
of the proof concerns the implication iii) =⇒ i). This implication is considerably
harder to prove than the corresponding implication for dyadic networks.

Proof of Theorem 4.1, i) =⇒ ii). Assume that the partition P is balanced and
that v1 and v2 are in the same element of P . Then v1 and v2 are of the same vertex-
type and there is a hyperedge-type-preserving bijection α : t−1(v1)→ t−1(v2) so that
for each hyperedge h1 ∈ t−1(v1) and every source index i, the sources si(h1) and
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si(α(h1)) are also in the same element of the partition P . For x ∈ SynP , we thus
have that xsi(h1) = xsi(α(h1)) for every i, which we may write as xs(h1) = xs(α(h1)). It
follows that for any admissible map and any x ∈ SynP , we have that

fv1(x) =Fv1

 ⊕
t(h1)=v1

xs(h1)

 = Fv1

 ⊕
t(h1)=v1

xs(α(h1))

 =

Fv2

 ⊕
t(h2)=v2

xs(h2)

 = fv2(x) .

The third equality uses the property of an admissible map. This proves f(SynP ) ⊂
SynP , so the synchrony space is invariant under any admissible map.

Proving the implication iii) =⇒ i) involves some combinatorics of finite number
sequences and polynomials that we need to develop first. To this end, let C ∈ N be a
number, and denote by C = {1, . . . , C} an ordered set of “colours”. We write Cm for
the set of ordered sequences of length m with entries in C. The reason for introducing
sequences is because, given a partition P = (V1, . . . , VC), we want to keep track of
the elements in the partition that each hyperedge receives its inputs from. More
precisely, to a given hyperedge h of order m we associate the signature of h, S(h), as
the ordered sequence (c1, . . . , cm) ∈ Cm where si(h) ∈ Vci for all i ∈ {1, . . . ,m}. We
wish to understand how different monomials in a response function change when we
restrict to SynP , which is ultimately determined by the signature of each hyperedge
involved.

We begin by putting a strict partial ordering � on Cm as follows. Given sequences
a, b ∈ Cm, we set a � b if

• the number of Cs appearing in a is greater than the number of Cs appearing
in b, or;

• the number of Cs appearing is the same for a and b, but the number of (C−1)s
appearing in a is greater than the number of (C − 1)s appearing in b, or;

...
• the number of Cs appearing is the same for a and b, as is the number of

(C − 1)s, (C − 2)s and so forth, up to the number of 3s, but the number of
2s appearing in a is greater than the number of 2s appearing in b.

We never have to consider the number of 1s, as an equal number of 2s up to Cs means
an equal number of 1s as well (both sequences have equal length m). It follows that
two sequences are only incomparable to each other if they have all symbols appearing
an equal number of times. It is not hard to see that � indeed defines a strict partial
ordering. The sequence aC := (C, . . . , C) satisfies aC � b for all b 6= aC .

Next, let Sm denote the symmetric group on m elements. For a = (c1, . . . , cm) ∈
Cm and σ ∈ Sm, we write Mσ

a ∈ Z[Z1, . . . , ZC ] for the monomial given by

Mσ
a(Z) = Zσ(1)c1 Zσ(2)c2 · · ·Zσ(m)

cm .

Note that the total degree of Mσ
a is always 1 + · · · + m = m(m+1)

2 . The monomials
Mσ

a will show up as the restriction to SynP of the terms in some conveniently chosen
response functions, where a will be the signature of an edge determined by P .

Example 4.2. Suppose m = 3 and C ≥ 2, and let a = (2, 2, 1) and b = (1, 1, 2).
We see that a � b, as the number of 2s appearing in a is larger than the number of
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2s appearing in b. Let Id ∈ S3 denote the identity permutation. We have

MId
a (Z)=Z

Id(1)
2 Z

Id(2)
2 Z

Id(3)
1 =Z1

2Z
2
2Z

3
1 =Z3

1Z
3
2 and MId

b (Z)=Z1
1Z

2
1Z

3
2 =Z3

1Z
3
2 .

Hence, we see that in this case MId
a =MId

b .

Finally, we need the notion of a permutation τ ∈ Sm that is attuned to a sequence
a ∈ Cm. To this end, suppose a has the symbol c appearing on the positions Ic ⊂
{1, . . . ,m}, for all c ∈ C. The permutation τ is attuned to a if τ takes on its #IC
largest values on IC , its next #IC−1 largest values on IC−1 and so forth.

Example 4.3. Given a = (3, 3, 1, 2, 1) ∈ C5, the permutation σ ∈ S5 given by

σ(1) = 4, σ(2) = 5, σ(3) = 1, σ(4) = 3, σ(5) = 2

is attuned to a. The same holds true when we switch the values of σ(1) and σ(2) or
those of σ(3) and σ(5). The identity permutation is, for instance, not attuned to a.

Remark 4.4. It is not hard to see that a permutation τ ∈ Sm is attuned to
sequence a = (c1, . . . , cm), precisely when the rearranged sequence (cτ(1), . . . , cτ(m))
is in non-decreasing order. This makes it clear that an attuned permutation always
exists, and it follows that two sequences are incomparable under � if and only if they
are the same when each is rearranged by one of its attuned permutations.

The result we need regarding these notions is the following:

Lemma 4.5. Let a ∈ Cm be a sequence and suppose the permutation τ ∈ Sm is
attuned to a. If b 6= a is another sequence such that Mτ

b =Mτ
a, then b � a.

Proof. Let us denote by Iac , I
b
c ⊂ {1, . . . ,m} the positions on which a and b have

the symbol c ∈ C, respectively. Note that we may write

(4.1) Mτ
a =

C∏
c=1

Z

∑
i∈Iac

τ(i)

c .

By assumption, (4.1) equals

Mτ
b =

C∏
c=1

Z

∑
i∈Ibc

τ(i)

c

so that

(4.2)
∑
i∈Iac

τ(i) =
∑
i∈Ibc

τ(i) for all c ∈ C .

We start by looking at c = C. As τ is attuned to a, it holds that IaC consists of the
#IaC distinct values i ∈ {1, . . . ,m} for which τ(i) is largest. Hence, the only way (4.2)
can hold for c = C is if either IaC = IbC or #IbC > #IaC . In the latter case we indeed
have b � a, whereas the former requires we look at c = C − 1.

Suppose therefore that Iac = Ibc for all c > d, for some fixed d ∈ C. Again, because
τ is attuned to a, we see that Iad consists of the #Iad distinct values

i ∈ {1, . . . ,m} \
(
IaC t · · · t Iad+1

)
= {1, . . . ,m} \

(
IbC t · · · t Ibd+1

)
for which τ(i) is largest. Here the symbol t denotes the union of disjoint sets. The
only way (4.2) can hold for c = d is when Iad = Ibd or #Ibd > #Iad . Again, the latter
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case means b � a, whereas the former means we look at c = d− 1 next. If at no point
in this procedure we conclude that b � a, then eventually we arrive at Iac = Ibc for
all c > 1, which implies that also Ia1 = Ib1. This means a = b, which we excluded by
assumption. Hence we indeed have b � a.

Proof of Theorem 4.1, iii) =⇒ i). To keep notation as simple as possible, we
write h1 ∼ h2 to indicate that the hyperedges h1 and h2 are of the same hyperedge-
type, and likewise use v1 ∼ v2 to denote equal vertex-type for the nodes v1 and v2. We
will write v1 ∼P v2 to indicate that the nodes v1 and v2 are in the same class of the
partition P . The set of classes or “colours” of P will be indexed by C = {1, . . . , C}.

We will prove that the partition P is balanced by constructing appropriate ad-
missible polynomial maps that allow us to count hyperedges with certain properties.
We claim that P is balanced if the following holds: for any hyperedge h0 and sequence
a ∈ Cm, with m the order of h0, the cardinality of the set

(4.3) N v
h0,a := {h ∼ h0 | t(h) = v and S(h) = a}

is the same for all nodes v in the same class of P . Here S(h) denotes the signature of
h determined by P , as defined above. If these cardinalities match, then for any two
nodes v1 ∼P v2 we may build a bijection α : t−1(v1)→ t−1(v2) that maps N v1

h0,a
into

N v2
h0,a

for all a and h0 satisfying the second condition of Definition 2.8. As P refines
the partition into vertex-types by assumption, this shows P is indeed balanced.

We therefore fix a node v0 and a hyperedge h0 of order 1 ≤ m ≤ k. The response
functions we will use to determine the cardinality of the sets N v

h0,a
are as follows.

Given σ ∈ Sm, when v ∼ v0 we set

(4.4) fσv (x) = Fσv

 ⊕
t(h)=v

xs(h)

 =
∑

t(h) = v
h ∼ h0

Qσ
(
xs(h)

)
,

in which

(4.5) Qσ
(
xs(h)

)
:=

m∏
i=1

(
xsi(h)

)σ(i)
1
· env1 .

Here env1 denotes the first unit vector (1, 0, . . . , 0) in Rnv and
(
xsi(h)

)σ(i)
1
∈ R is the first

component of xsi(h) ∈ Rnsi(h) raised to the power σ(i). Note that for one-dimensional

internal dynamics the function (4.5) is just given by Qσ
(
xs(h)

)
= x

σ(1)
s1(h)

. . . x
σ(m)
sm(h).

We also point out that each Fσv is polynomial of degree 1+ · · ·+m = m(m+1)
2 ≤ k(k+1)

2
and satisfies the symmetry-properties imposed on response functions. When v is not
vertex-equivalent to v0 we set fσv (x) = 0. In particular, we then have that fσv1 and
fσv2 agree on SynP whenever v1 ∼P v2 by assumption iii).

We now parametrize the synchrony space SynP by a variable Y = (Yc)c∈C via the
map Y 7→ x = (xv)v∈V defined by xv := Yc if v ∈ Vc. It follows that for x ∈ SynP
we may write xs(h) = (Yc1 , . . . , Ycm) where si(h) ∈ Vci . Note that the indices of this
latter vector are precisely the signature S(h) = (c1, . . . , cm). Additionally, if we write
Zc := (Yc)1 for all c ∈ C and Z = (Zc)c∈C , then the first component of the vector
valued function (4.4), evaluated on SynP , is precisely given by

(4.6) (fσv (x))1 =
∑

t(h) = v
h ∼ h0

Mσ
S(h)(Z) .
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Each term h in the sum in (4.6) yields a term Mσ
a if S(h) = a and we may write

(4.7) (fσv (x))1 =
∑
a∈Cm

(
#N v

h0,a

)
Mσ

a(Z) ,

for x ∈ SynP . It may happen that Mσ
a = Mσ

b for distinct sequences a, b ∈ Cm, as
Example 4.2 shows. Hence, we may not directly read off #N v

h0,a
as the number of

monomials Mσ
a appearing in (fσv )1|SynP .

Instead we claim given a sequence a ∈ Cm, if the values of #N v
h0,b

are known for all
b such that b � a, then we can retrieve #N v

h0,a
from (fσv )1|SynP for some appropriately

chosen permutation σ. To show that this indeed holds, we choose a ∈ Cm and fix a
permutation τ ∈ Sm that is attuned to a. It follows from (4.7) that the polynomial
(fτv )1|SynP will involve the monomial Mτ

a exactly Mτ
v,a times, where

(4.8) Mτ
v,a =

∑
b ∈ Cm
Mτ

b =Mτ
a

#N v
h0,b .

However, Lemma 4.5 tells us that the sum in (4.8) goes only over sequences b satisfying
b � a, apart from a itself. Hence, we may indeed determine #N v

h0,a
from the given

information. Note that the largest sequence aC = (C, . . . , C) satisfies Mσ
aC (Z) =

Z
m(m+1)/2
C for any permutation σ ∈ Sm, whereas for all other sequences b we have

Mσ
b (Z) 6= Z

m(m+1)/2
C for all permutations σ ∈ Sm. Hence, the number #N v

h0,aC
equals the coefficient in front of the monomialMσ

aC in (fσv )1|SynP for any permutation
σ. As any sequence b 6= aC satisfies aC � b, we see that we may iteratively find all
numbers #N v

h0,a
from the maps (fσv )1|SynP in this way.

Finally, as fσv1 and fσv2 agree on SynP for any σ ∈ Sm whenever v1 ∼P v2, we see
that #N v1

h0,a
= #N v2

h0,a
for all such nodes v1, v2, all hyperedges h0 and all signatures

a. This shows that P is indeed balanced.

In Section 5 we present a family of examples to show that the number k(k+1)
2 is optimal

and for general hypernetworks cannot be reduced. This implies in particular that only
in classical networks (hypernetworks of order one) robust synchrony is determined by
the linear admissible maps.

Remark 4.6. If the internal phase spaces Rnv also agree for some nodes that are
not of the same vertex-type, then we may define the space

SynP := {xv1 = xv2 when v1, v2 are in the same element of P } .

for some partition P that does not refine the partition into vertex-types. However,
such spaces are not even invariant under all constant N-admissible maps, as can be
seen by setting fv(x) = Cv for some vectors Cv ∈ Rnv such that Cv = Cw if and only
the nodes v and w have the same vertex-type.

Example 4.7. Recall our running example (see Examples 2.3 and 2.6). In Exam-
ple 2.9 we concluded that the partition P = {v0} ∪ {v1} ∪ {v2} ∪ {w0, w1} is not
balanced. One can check that the corresponding synchrony space {y0 = y1} is not
robust: it is not invariant under all admissible maps, and in particular not under all

polynomial admissible maps of order 2(2+1)
2 = 3 and higher. However, one may also

verify that {y0 = y1} is invariant under all linear and quadratic admissible maps.
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5. An interesting class of examples. In this section, we construct a class of
hypernetworks with interesting “near-synchrony” properties. More precisely, given
k ≥ 2 and a hypernetwork of order at most k and with k+1 cells of identical type, we
construct a new hypernetwork of order k with a synchrony space that is not robust,
but that is nevertheless invariant under every polynomial admissible map of degree

strictly less than k(k+1)
2 . These examples therefore show that the bound of k(k+1)

2 in
Theorem 4.1 cannot in general be decreased. We also present a brief exploration of a
remarkable synchrony breaking bifurcation in one of the hypernetworks constructed
in this way.

To introduce our construction, let Sn denote the symmetric group on n elements
(i.e., the group of permutations of n elements) and write S0

n, S
1
n ⊆ Sn for the set of even

and odd permutations, respectively. By sgn(σ) we denote the sign of a permutation
σ ∈ Sn, which equals 0 if σ ∈ S0

n is even, and equals 1 if σ ∈ S1
n is odd.

Definition 5.1. Let N be a given hypernetwork with k + 1 ≥ 3 nodes v0, . . . , vk,
all of identical type. The augmented hypernetwork N♦ is obtained from N by adding
two additional nodes w0 and w1, their self-loops and (k + 1)! hyperedges of order k.
The two additional nodes are of the same type, which is different from that of the vi,
and the additional hyperedges are likewise of a same, new type. These new hyperedges
are labelled by the elements of the symmetric group on k + 1 elements, Sk+1. Given
σ ∈ Sk+1, the hyperedge hσ satisfies

(5.1) s(hσ) = (vσ(1), . . . , vσ(k)) , t(hσ) = wsgn(σ) ,

where Sk+1 is understood to act on the ordered set {0, . . . , k} and vσ(0) is therefore
the only node in N that is not a source of hσ. We will refer to N as the core of the
augmented hypernetwork N♦.

The order of the augmented hypernetwork in Definition 5.1 is k, provided the core has
order k or less. In particular, this holds when the core is a classical (dyadic) network.

Example 5.2. Let N be the classical network consisting of three disconnected
nodes, with only a single self-loop for each of them. It follows that the augmented
hypernetwork N♦ is the one shown in the left panel of Figure 1. Here the circular
nodes belong to N, whereas the square ones are the newly added w0 and w1. Note
that the core N is not required to be connected in Definition 5.1.

Example 5.3. The hypernetwork from Example 2.3 is the augmented hypernet-
work with core the classical three-node network shown within the box in Figure 2 (i.e.
consisting of the circular nodes and the arrows in between).

Given an augmented network N♦ with core N, we shall denote by x0, . . . , xk the
dynamical variables of the cells v0, . . . , vk and by y0, y1 the variables of the cells w0, w1.
For convenience, we assume from here on out that all cells have a one-dimensional
internal phase space. It follows that the equations of motion for the y-variables are
given by

ẏ0 = F
(
y0,
⊕

σ∈S0
k+1

xσ

)
, ẏ1 = F

(
y1,
⊕

σ∈S1
k+1

xσ

)
.(5.2)

Here we used the notation

xσ = (xσ(1), . . . xσ(k)) ∈ Rk
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for the source variables of the hyperedge hσ. The response function

F = F

Y, ⊕
σ∈S0

k+1

Xσ

 from R⊕
⊕

σ∈S0
k+1

Rk to R

is assumed to be invariant under any permutation of the (k+1)!
2 entries Xσ ∈ Rk,

which implies in particular that the notation
⊕

σ∈S0
k+1

Xσ for the arguments of F is

unambiguous: the Xσ can be substituted into F in arbitrary order. As S0
k+1 and S1

k+1

have the same cardinality, the invariance of F likewise means that the expression for
ẏ1 in Equation (5.2) is well-defined. Note that each ẋi depends only on the x-variables,
according to the hypernetwork structure of the core N. This is because the core is a
sub-hypernetwork of the augmented hypernetwork.

Our main result about these augmented hypernetworks is the following.

Theorem 5.4. Let N♦ be an augmented hypernetwork whose core consists of k+1
nodes. Assume one-dimensional internal dynamics for each of the nodes, and write F
for the response function of the y-nodes as in Equation (5.2). The space {y0 = y1} is
invariant for all admissible systems for N♦ with F polynomial of total degree strictly

less than k(k+1)
2 , but not for all polynomials F of total degree k(k+1)

2 . In particular,
{y0 = y1} is not a robust synchrony space.

As the dynamics of the cells in the core does not depend on the y-variables, we see
that invariance of the space {y0 = y1} is equivalent to the condition

F

y, ⊕
σ∈S0

k+1

xσ

 = F

y, ⊕
σ∈S1

k+1

xσ

(5.3)

for all y = y0 = y1 ∈ R and x = (x0, . . . , xk) ∈ Rk+1. This explains why the result
of Theorem 5.4 does not depend on the core N. At the end of this section we will
investigate a phenomenon in augmented hypernetworks that does depend on specifics
of the core. Equation (5.3) also suggests that in order to prove Theorem 5.4, we first
need to gather results on functions with the symmetry properties of F . To this end
we have the following lemmas.

Lemma 5.5. Let Q :
⊕

σ∈S0
k+1

Rk → R be a function that is invariant under all

permutations of its #S0
k+1 entries in Rk. Then we have

Q

 ⊕
σ∈S0

k+1

xσ

 = Q

 ⊕
σ∈S1

k+1

xσ


for x = (x0, . . . , xk) ∈ Rk+1 whenever xi = xj for some distinct i, j ∈ {0, . . . , k}.

Proof. Let i and j be as in the lemma and let κ ∈ S1
k+1 denote the transposition

that interchanges i and j, while leaving the other indices fixed. By assumption we have
xκ(`) = x` for all ` ∈ {0, . . . , k}. It follows that for all σ ∈ Sk+1 and m ∈ {1, . . . , k} it
holds that

(xκσ)m = xκ(σ(m)) = xκ(`) = x` = xσ(m) = (xσ)m ,

where we have set ` = σ(m). Hence, we see that xκσ = xσ for all σ ∈ Sk+1. From
the fact that κS0

k+1 = S1
k+1 as sets, together with the symmetry properties of Q, we
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indeed find

Q

 ⊕
σ∈S0

k+1

xσ

 = Q

 ⊕
σ∈S0

k+1

xκσ

 = Q

 ⊕
σ∈S1

k+1

xσ

 ,

which completes the proof.

Lemma 5.6. Let Q be as in Lemma 5.5 and assume in addition that this function
is polynomial. There exists a polynomial S : Rk+1 → R such that

(5.4) Q

 ⊕
σ∈S0

k+1

xσ

−Q
 ⊕
σ∈S1

k+1

xσ

 = S(x)

k∏
i,j=0
i>j

(xi − xj)

for all x = (x0, . . . , xk) ∈ Rk+1.

Proof. It follows from Lemma 5.5 that the left hand side of (5.4) vanishes when-
ever xi = xj for some distinct i, j ∈ {0, . . . , k}. Let us fix two such indices i 6= j. Any
polynomial P in the variables x = (x0, . . . , xk) may be written as

P (x) = (xi − xj)T (x) +R(x0, . . . , x̂i, . . . , xk),

for some polynomials T and R, and where x̂i means that R does not depend on xi.
This can be seen by setting xi = (xi−xj)+xj and separating out multiples of xi−xj .
If P vanishes when we set xi = xj then necessarily R = 0, so that xi − xj divides P .

Returning to (5.4), we conclude that the left hand side is divisible by xi − xj
for all pairs of distinct indices (i, j). If we impose i > j then the factors xi − xj
are all different irreducible polynomials (i.e., not differing by a unit). Using that the
polynomial ring R[x0, . . . , xk] is a unique factorization domain (a UFD), we conclude
that the left hand side of (5.4) is indeed divisible by

k∏
i,j=0
i>j

(xi − xj) ,

from which (5.4) follows.

Corollary 5.7. Let Q be a polynomial as in Lemmas 5.5 and 5.6. If Q is of

total degree less than k(k+1)
2 , then

(5.5) Q

 ⊕
σ∈S0

k+1

xσ

 = Q

 ⊕
σ∈S1

k+1

xσ


for all x = (x0, . . . , xk) ∈ Rk+1.

Proof. From Lemma 5.6 we get (5.4) for some polynomial S. The left hand side

of (5.4) has degree less than k(k+1)
2 , whereas the factor

∏k
i,j=0
i>j

(xi − xj) on the right

hand side has degree k(k+1)
2 . So (5.4) can only hold when S = 0, which proves (5.5).
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Finally, we introduce a symmetric function for the proof of Theorem 5.4. Given k ∈ N,
we define the power sum symmetric polynomial P(k) :

⊕
σ∈S0

k+1
Rk → R as

(5.6) P(k)

 ⊕
σ∈S0

k+1

Xσ

 =
∑

σ∈S0
k+1

X1
σ,1X

2
σ,2 · · ·Xk

σ,k ,

where Xσ = (Xσ,1, . . . , Xσ,k) ∈ Rk for σ ∈ S0
k+1. Note that P(k) is symmetric under

all permutations of its #S0
k+1 entries Xσ in Rk and has degree 1 + · · ·+ k = k(k+1)

2 .

Proof of Theorem 5.4. We first show that the space {y0 = y1} is not in general
invariant when the response function F in Equation (5.2) is a polynomial of degree
k(k+1)

2 . To this end, we set

F

Y, ⊕
σ∈S0

k+1

Xσ

 = P(k)

 ⊕
σ∈S0

k+1

Xσ

 ,

where P(k) is defined by (5.6). It follows that

(5.7) ẏ0 = F

y0, ⊕
σ∈S0

k+1

xσ

 =
∑

σ∈S0
k+1

x1σ(1) · · ·xkσ(k) ,

and similarly

(5.8) ẏ1 = F

y1, ⊕
σ∈S1

k+1

xσ

 =
∑

σ∈S1
k+1

x1σ(1) · · ·xkσ(k) .

It is not hard to see that the right hand sides of Equations (5.7) and (5.8) are not
equal. For example, we can only have

x1σ(1) · · ·xkσ(k) = x00x
1
1 · · ·xkk

if σ ∈ Sk+1 is the identity. Hence, this particular monomial appears in Equation (5.7)
but not in Equation (5.8). This shows that the polynomials on the right hand sides
of both equations are indeed different, and hence that {y0 = y1} is not robust.

On the other hand, suppose now that F is a polynomial of degree d < k(k+1)
2

satisfying the required symmetry conditions. It follows that we may write

F

Y, ⊕
σ∈S0

k+1

Xσ

 =

d∑
`=0

Y `Q`

 ⊕
σ∈S0

k+1

Xσ

 ,

where each polynomial Q` is invariant under all permutations of its (k+1)!
2 entries Xσ,

and of degree strictly less than k(k+1)
2 . By Corollary 5.7 we have

(5.9) Q`

 ⊕
σ∈S0

k+1

xσ

 = Q`

 ⊕
σ∈S1

k+1

xσ


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for all ` ∈ {0, . . . , d}. This in turn implies that

ẏ0 = F

y0, ⊕
σ∈S0

k+1

xσ

 = F

y1, ⊕
σ∈S1

k+1

xσ

 = ẏ1

whenever y0 = y1, which proves that the space {y0 = y1} is dynamically invariant.

Remark 5.8. The synchrony space {y0 = y1} is the fixed point space of the map

S : (x0, . . . , xk, y0, y1) 7→ (x0, . . . , xk, y1, y0) .

From the proof of Theorem 5.4 it is clear that S is a symmetry of the admissible
vector field for the augmented hypernetwork whenever F is polynomial of degree less

than k(k+1)
2 , but not in general. As fixed point spaces are dynamically invariant for

equivariant systems (see for example Theorem 8.4 in [21]), this offers an alternative
interpretation of Theorem 5.4.

We conclude this section by describing a type of bifurcation that appears to occur
abundantly in augmented hypernetworks. The idea is that, even though {y0 = y1}
is not a robust synchrony space, its invariance under polynomial response functions
of sufficiently low degree, makes it act as a “ghost” synchrony space that can still
influence bifurcations. In particular, in various examples we found steady-state bifur-
cation branches (x(λ), y(λ)) in which y0(λ) and y1(λ) are not exactly equal, but do
agree up to unusually high degree in the bifurcation parameter λ. We have dubbed
this phenomenon “reluctant synchrony breaking” and we investigate it in detail in a
companion paper. Here we only illustrate it in one numerical example.

Example 5.9. We revisit the augmented hypernetwork from Examples 2.3 and 5.3,
of which the admissible ODEs are given by Equation (2.2) in Example 2.6. Instead
of a single admissible vector field, we consider a family of them by defining for each
λ ∈ R the response functions

Gλ(X0, X1, X2) = −X0 +X1 −X2 + 8λX0 + 4X2
0 and(5.10)

Fλ(Y, (X0, X1), (X2, X3), (X4, X5)) = −5Y + 14λ(5.11)

− h(10X0 − 12X1)− h(10X2 − 12X3)− h(10X4 − 12X5) ,

in which

(5.12) h(x) = sin(x) + cos(x)− 1 =
√

2 sin(x+
π

4
)− 1 .

For every value of λ, the function Fλ satisfies the symmetry conditions required in
Equation (2.3). As G0(0, 0, 0) = F0(0, (0, 0), (0, 0), (0, 0)) = 0, the resulting admissible
vector field has a fixed point at the origin for λ = 0. Moreover, by construction the
Jacobian of the admissible vector field around the origin is singular, so that we may
expect a steady-state bifurcation to occur as λ is varied near 0.

Figure 5 shows the results of a numerical bifurcation analysis of the problem, in
which we found a stable branch of steady states for small λ < 0 and a stable branch of
steady states for small λ > 0. Figure 5a is a bifurcation diagram showing the values
of the different components xi(λ) and yi(λ) on these stable branches. The branch for
λ < 0 appears to lie in the robust synchrony space {x0 = x1 = x2 and y0 = y1}.
At λ = 0, the core (corresponding to the x-values) undergoes a synchrony breaking
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bifurcation, causing the xi to become fully non-synchronous for λ > 0. For small
positive values of λ, the y-values on this branch seem to remain equal, but at higher
values of λ, it becomes clear that a small separation occurs. Figure 5b corroborates
this observation, showing a non-linear departure from the space {y0 = y1}, with
Figure 5c indicating that in fact y0(λ)− y1(λ) ∼ λ3 for λ > 0.

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

λ

−0.05

0.00
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0.10

x
i,
y j

x0

x1

x2

y0

y1

(a) The stable branches of a synchrony breaking bifurcation.
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(b) The difference between the y-nodes
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(c) A log–log plot of the difference be-
tween the y-nodes, for λ > 0.

Figure 5: Numerically obtained bifurcation diagram for a family of systems corre-
sponding to the augmented hypernetwork shown in Figure 2. For comparison, the
black line segment in the log-log plot has slope 3, indicating that y0(λ)− y1(λ) ∼ λ3.

Such “reluctant synchrony breaking” would be highly anomalous in bifurcations
of general vector fields. However, we claim (and do not prove here but elsewhere)
that it happens in generic one-parameter families of hypernetwork vector fields of the
form (2.2). In particular, it is not an artifact of our particular choice of response func-
tions. Rather, our response functions (5.10) and (5.11) are merely chosen to guarantee
stability of each branch for the correct sign of λ, to produce clear pictures, and to
illustrate that the reluctant behavior y0(λ)− y1(λ) ∼ λ3 is not just a consequence of
(low-degree) polynomial response functions.

Figure 5 was obtained by forward integrating the equations of motion for each of
600 equidistributed values of λ ∈ [−0.03, 0.03] (in [0.0005, 0.03] for Figure 5c), using
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Euler’s method with time steps of 0.1. For each value of λ integration was performed
up to t = 2000 and starting from the point (x0, x1, x2, y0, y1) = (0.1,−0.2, 0.3, 0.4, 0.5)
in phase space. Note that only stable branches can be visualised in this way.
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