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In this article we investigate the convergence behavior of gathering proto-
cols with fixed circulant topologies using tools form dynamical systems. Given
a fixed number of mobile entities moving in the Euclidean plane, we model a
gathering protocol as a system of ordinary differential equations whose equilibria
are exactly all possible gathering points. Then, we find necessary and sufficient
conditions for the structure of the underlying interaction graph such that the
protocol is stable and converging, i.e., gathering, in the distributive computing
sense by using tools from dynamical systems. Moreover, these tools allow for
a more fine grained analysis in terms of speed of convergence in the dynamical
systems sense. In fact, we derive a decomposition of the state space into stable
invariant subspaces with different convergence rates. In particular, this decom-
position is identical for every (linear) circulant gathering protocol, whereas only
the convergence rates depend on the weights in interaction graph itself.

1. Introduction

This article applies dynamical systems theory to the design and analysis of collective be-
havior of swarms of mobile entities, called robots from now on, which are widely stud-
ied in the computer science community under the headline of distributed computing (e.g.
[Ham18, FPS12, FPS19]). Envision a scenario where a distributed system of mobile robots
is supposed to establish a certain formation in the plane (more general spaces are possible
but shall be neglected here). Formations under investigation vary from simple straight lines
and circles to more complex structures that the robots are supposed to distribute evenly in
(see e.g. [FPSV17, SY06, LC08, CP06]). The most basic formation problem, however, is the
gathering problem in which the robots are supposed to gather in a single, not predefined,
point.

The robots capabilities to accomplish their task are limited. Typical assumptions are
that they are externally identical (every robot looks the same), anonymous (they do not
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have unique identifiers), and oblivious (they do not remember past steps). The only ca-
pabilities the robots have are observing other robots’ positions, performing computations
in their local memory, and move. The observation of another robot’s position is a form
of communication or interaction. Commonly, the robots are additionally assumed to be
limited in their communication capabilities as well by having only a limited viewing range
C > 0 within which they can perceive the positions of other robots. In particular, the
robots do not share a common coordinate system. To reach a formation, each robot plans
its movement individually according to its observations. In particular, there is no external
control. The strategy that each robot pursues is called a protocol. Crucially, the protocols
of all robots are identical (the robots are also identical internally).

Most protocols for formation problems are based on a discrete time model. Robots act in
synchronous so-called Look-Compute-Move (LCM) rounds, consisting of the determination
of the relative positions of neighbors, the computation of a target point, and the movement
to that target point. This is commonly is referred to as the Fsync model. Multiple
protocols to solve the gathering problem have been developed for this model (and also for
more powerful robots) [ASY95, DKL+11, CFH+20, CP05, LV19, IKIW07, Flo19]. On the
other hand protocols using a continuous time model are less studied. In this situation,
all robots perform their LCM rounds permanently and instantaneously. The Move part
is modified to the continuous adjustment of speed and direction. This continuous motion
model might seem unrealistic, e.g., due to the assumption that there is no delay between
the robots’ sensors and actors. However, it was pointed out that it is comparatively close to
real applications. Several protocols to address the gathering problem have been proposed
as well [DKKM15, KMadH19].

Typically, studies as the ones referenced above do not only prove that an introduced
protocol solves the investigated problem but also analyze the collective dynamics of the
robot swarm in terms of the speed with which a protocol solves a given task. This allows
for the comparison of different protocols. The speed of a protocol is commonly assessed by
runtime analysis of the corresponding algorithms through combinatorical investigations. It
can be observed that a given protocol causes the robots in one configuration (the collective
state of all robots’ positions) to gather much faster than in another (e.g., [DKL+11]). This
can be used to derive best and worst-case runtimes.

The key contribution of this article is to show that applying the mathematical theory
of dynamical systems to this problem class from distributed computing allows for a more
profound understanding of the collective dynamics. In particular, it is possible to determine
the final gathering point and to identify a hierarchy of gathering rates with corresponding
configurations. To that end, we will focus on the gathering problem of robots with the limi-
tations outlined above performing continuous protocols. The interaction structure between
robots is assumed to be circulant (compare to Example 1.1 below) and remains unchanged
throughout the dynamics. This slightly weakens the assumption of anonymity because each
robot is able to identify the robots it communicates with. Furthermore, we do not make
the assumption of a finite communication range in general. We will address this limitation
separately on multiple occasions. For the most part, we restrict to linear protocols, i.e., each
robot computes its target point as a linear combination of the positions of its neighbors.
However, we outline options to generalize to nonlinear protocols as well.

As a first step, we investigate the interaction structure of the robots. We represent the
fixed interactions using a weighted graph corresponding to the robots and communication
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channels which we call the interaction graph. Dynamical systems theory allows us to unveil
necessary and sufficient conditions that this graph has to satisfy in order for a protocol to
solve the gathering problem. For example, we show in Theorem 3.9 that a general linear
protocol of this kind is gathering if and only if the weight matrix of the interaction graph
has specific spectral properties. For a circulant protocol of this kind the result simplifies
to the condition that the interaction graph is connected and the weights sum to 1 (see
Theorem 3.16).

Focusing on linear protocols with a circulant interaction graph, we then perform a more
fine grained analysis of the dynamics. In particular, we unveil a foliation of the state space of
all robots’ positions into dynamically invariant subspaces in which the configurations gather
with different speeds. This foliation is independent of the precise protocol. It allows to iden-
tify gathering rates for different initial configurations (cf. Theorem 4.4) and to decompose
initial configurations into components with different gathering rates (cf. Corollary 4.6).

We would like to point out the reference [KMadH11] which largely inspired the work on
this project. Therein the authors apply the theory of Markov chains to robots forming a
chain between two fixed stations in a discrete time model under a similarly rigid interaction
structure. In [Kli10], one of the authors takes a brief outlook on how to extend these
methods to the gathering problem. While the mathematical investigation in this article
bears some semblances, the different setup requires entirely different proofs.

Before we dive into the details of modelling the gathering problem as a dynamical system
and analyzing it for collective dynamics, we illustrate the main results at the hand of the
following example.

Example 1.1. Consider N = 7 mobile robots that we identify with their indices { 0, . . . , 6 }.
The robots are running the Go-To-The-Middle protocol. That is, if zi(t) ∈ R2 is the
position of robot i at time t the i-th robot will move towards the midpoint between its two
neighbors

1

2
(zi−1(t) + zi+1(t)) ,

where we require the convention that z−1 = z6 and z7 = z0. In particular, each robot
communicates with its left and right neighbors when arranged on a circle. Theorem 3.16
shows that this is indeed a dynamical systems model of a protocol that solves the gathering
problem. Furthermore, Figure 1 displays two different initial configurations. Applying The-
orem 4.4 shows that the configuration on the left in (a) has the slowest gathering rate, while
the configuration on the right in (b) has the fastest gathering rate. Further intermediate
configurations are unveiled as well. The details will be developed below.

The article is organized as follows: In Section 2 we introduce the general problem. This
contains Section 2.1 in which we introduce necessary notation and model the problem as a
dynamical system governed by an ordinary differential equation. In Section 2.2, we intro-
duce circulant interaction graphs. Section 3 contains the investigation of general gathering
protocols. We argue why it is reasonable to focus on linear systems (Section 3.2) and
deduce conditions for gathering both for general (Section 3.3) and for circulant systems
(Section 3.4). Some of the more technical proofs are postponed to Appendix A. Finally,
in Section 4, we develop the main dynamical analysis by proving the hierarchy of different
gathering rates.
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(b) Fast gathering configura-
tion

Figure 1: Illustration of the gathering hierarchy exhibited by N = 7 robots running the
Go-To-The-Middle protocol. Blue dots indicate positions of each robot. Gray lines
symbolize the communication relation. The configuration in (a) corresponds to the slowest
gathering rate. The configuration (b) corresponds to the fastest gathering rate.
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2. Introductory Considerations

2.1. Notations and Definitions

We begin by setting up a dynamical systems model for the collective dynamics of a collection
of N ∈ N interacting mobile robots. For simplicity of notation, we refer to individual robots
only by their label according to an arbitrarily chosen enumeration, i.e., { 0, . . . , N − 1 } is
the set of robots. The robots move in the Euclidean plane in continuous time and we denote
the position of robot i ∈ { 0, . . . , N − 1 } at time t ∈ R by zi(t) = (xi(t), yi(t)) ∈ R2. The
collection of all robots’ positions is called a configuration. As mentioned above, each robot
observes the positions of (a subset of) the other robots in relative coordinates. However, we
take the stance of an external observer describing the dynamics in global coordinates. Each
robot then adapts its own direction and speed of movement instantaneously as in a Look-
Compute-Move cycle (LCM) in continous time. We model this instantaneous adaptation
by a system of ordinary differential equations (ODEs) of the form

żi(t) = −zi(t) + f(z0(t), . . . , zN−1(t)), i = 0, . . . , N − 1. (1)

The collection of all equations (1) models the movement of all robots i ∈ { 0, . . . , N − 1 }.
Here, żi(t) denotes the derivative of zi(t) with respect to time t ∈ R. In particular, the
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left hand side of (1) is the velocity vector of the i-th robot. The function f : R2N → R2

describes which target point the robot computes according to the positions of its neighboring
robots given by z0(t), . . . , zN−1(t). Hence, by subtracting its own current position zi(t) the
left hand side of (1) models the movement to that target point f(z0(t), . . . , zN−1(t)). The
system (1) is autonomous since f does not depend on time t ∈ R. Note that, in general,
not every neighboring position zj(t) will influence the dynamics of the i-th robot, i.e., its
dynamics is in fact independent of zj(t) for some j ∈ { 0, . . . , N − 1 }. We will go into
the details of the topology of of these interactions below. We assume f to be at least
continuously differentiable, which ensures existence and uniqueness of solutions zi(t) for a
prescribed initial point and also allows us to apply classical tools from dynamical systems
theory. Moreover, we emphasize that the robots are identical and as such all of them react
to their neighbors positions in exactly the same way. This is reflected by the fact that the
function governing the right hand side f of (1) is the same for every robot i. Finally, note
that we will frequently omit the time argument in the presentation when time t is clear from
context or its precise value is not important. This convention is common in the dynamical
systems literature and allows us to simplify notation, for example by writing zi instead of
zi(t).

Since we are modeling a gathering protocol, we assume that every robot is at rest, when
all robots share the same position zi = z∗ = (x∗, y∗) ∈ R2 for all i ∈ { 0, . . . , N − 1 }, which
will be called a gathering point. Note that we do not assume uniqueness of this position,
as the gathering point is independently determined by the robots and it is not predefined.
In terms of the ODE model (1) this means that żi = 0, if and only if zi = z∗ for all
i ∈ { 0, . . . , N − 1 }. That is, the system has to be in equilibrium for any such configuration.
In particular, this implies that the right hand side has to vanish meaning

f(z∗, . . . , z∗) = z∗ for all z∗ ∈ R2. (2)

In the distributed computing literature any such protocol satisfying this assumption is said
to be stable [HJPR87, SS94].

Remark 2.1. In general, in the distributed computing sense the term ’stable’ refers to a
property that once true on a state, it remains true forever [SS94]. Translating this definition
for the ODE model (1) precisely yields (2), i.e., every gathering point is an equilibrium of
(1). Note that, there is also the definition of stability for an equilibrium in the dynamical
systems sense: An equilibrium z∗ is said to be stable if every trajectory initialized sufficiently
close to z∗ stays close to z∗ for all times. We highlight that both definitions, though slightly
related, have a different meaning which is due to their origin in the distributed computing,
respectively dynamical systems community. On the one had stability is a property of a
protocol or model, and on the other hand it is a property of an equilibrium, e.g., a gathering
point in our setting.

Collecting every position zi = (xi, yi) ∈ R2 of each robot i in a single vector defined by
Z(t) = (z0(t), . . . , zN−1(t)) = (x0(t), y0(t), . . . , xN−1(t), yN−1(t)) ∈ R2N , allows us to write
the system of all equations (1) as

Ż(t) = F (Z(t)) = −Z(t) +

f(Z(t))
...

f(Z(t))

 , (3)
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i.e., F : R2N → R2N is constructed by stacking all equations (1) in a single function.
Note that (3) has a steady state Z∗ ∈ R2N , which is by construction of the form Z∗ =
(z∗, z∗, . . . , z∗) ∈ R2N and thus will be called synchronous state. We define the subspace of
all synchronous states by Syn =

{
Z∗ = (z∗, . . . , z∗) z∗ ∈ R2

}
⊆ R2N .

In some cases, it turns out to be helpful to arrange the coordinates of all robots’ po-
sitions into a single vector in another way, which is Z̃ := (X,Y ) ∈ R2N , where X =
(x0, . . . , xN−1) ∈ RN denotes the x-coordinates of the N robots and Y = (y0, . . . , yN−1) ∈
RN the y-coordinates, respectively. In these coordinates the corresponding synchronous
state is Z̃∗ = (X∗, Y ∗) = (x∗, . . . , x∗, y∗, . . . , y∗) ∈ R2N . We note that this particular order
will be useful for the upcoming dynamical analysis.

Typically, one encodes the pairwise interactions between robots by a graph G = (V,E).
Here, the vertices are the robots V = { 0, . . . , N − 1 } and an edge e = (j, i) ∈ E ⊆ V × V
represents the fact that robot i adapts its movement using the position of robot j. In other
terms, an edge represents the fact that robot j influences robot i. On the other hand, if
the edge e = (j, i) is not in E then robot j has no impact on the movement of robot i. We
refer to this graph as the interaction graph. It is common and useful to further encode the
graph structure in terms of an adjacency matrix of the form

A = (ai,j)
N−1
i,j=0 ∈ { 0, 1 }N×N , ai,j =

{
1, if e = (j, i) ∈ E, i.e, robot j influences robot i,

0, otherwise.

By construction we can read off all robots j that influence robot i in the i-th row of A.
In this article, we will focus on the situation that the interaction structure is fixed for

all times, that is, the subset of robots that i uses to compute its velocity vector remains
unchanged no matter what position these robots are in. In particular, this means that
no connections are added or removed from E as time proceeds and there is no limited
viewing range. Moreover, we assume the interaction graph to be weighted, that is, each edge
e = (j, i) ∈ E is assigned a weight wi,j ∈ R \ { 0 }. These allow each robot to distinguish
between its influences. We assemble the so-called weight matrix W = (wi,j)

N−1
i,j=0 ∈ RN×N ,

where we set wi,j = 0 if e = (j, i) /∈ E. Note that wi,j = 0 if and only if ai,j = 0 by
construction.

In the remainder of this article, we will further refer to and exploit several structural
properties that the interaction graph G – and as a result also A - may or may not have.
In particular, the interaction graph is called connected (or weakly connected) if for any two
vertices j, i ∈ { 0, . . . , N − 1 } there is an undirected path from j to i, i.e., there are vertices
k0 = j, k1, . . . , kl+1 = i ∈ { 0, . . . , N − 1 } such that (kr−1, kr) ∈ E or (kr, kr−1) ∈ E for r =
1, . . . , l+ 1. It is called strongly connected if for any two vertices j, i ∈ { 0, . . . , N − 1 } there
is a directed path from j to i, i.e. there are vertices k0 = j, k1, . . . , kl+1 = i ∈ { 0, . . . , N − 1 }
such that (kr−1, kr) ∈ E for r = 1, . . . , l + 1. It is clear that strong connectivity implies
weak connectivity. Note that the connectivity of an interaction graph does not depend on
the weights assigned to each edge. Finally, any weight matrix W ∈ RN×N corresponding to
a strongly connected graph is called irreducible.

Using the interaction graph, we can adapt the robot’s individual dynamics in (1) to reflect
the interaction structure and consider

żi = −zi + f(zI(i)),
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where zI(i) represents the collection of positions of those robots that i actually uses to adapt
its own movement (note the abuse of notation in the function f). More precisely, I(i) :=
(j e = (j, i) ∈ E) = (j ai,j = 1) denote the (ordered) tuple of robots j that influence the
dynamics of robot i and

zI(i) = (zj j ∈ I(i))

is defined as the corresponding neighboring positions. Since the robots in our model are
able to distinguish between each other, the precise order in which the arguments enter f
matters. Hence, I(i) and zI(i) are assumed to be (ordered) tuples rather than sets. Their
explicit order corresponds to the interaction topology that we specify below.

Finally, we introduce some terminology regarding properties of a protocol modeled by
(1). It is analogous to that used in [KMadH11].

Definition 2.2. A protocol modeled by (1) is called convergent, if the solution with any
initial configuration converges to a gathering point for t→∞. It is called gathering if it is
both stable (cf. (2)) and convergent.

Remark 2.3.

(a) Although similar, the notions are not equivalent, as neither implies the other. For
example, consider (1) with f(Z) = 0. Then one readily sees that the solution for
any initial configuration converges to Z = (0, . . . , 0)T ∈ R2N . While this is indeed a
gathering point, it also implies that any gathering initial condition Z∗ 6= (0, . . . , 0) ∈
R2N also converges. In particular, the system is not in equilibrium at Z∗ ∈ R2N . Thus,
the protocol is convergent but not stable.

(b) As the definition of ’convergent’ for a protocol addresses convergence of initial points
to a gathering point, i.e, an equilibrium for a stable protocol, it can arguably be related
to the notion of asymptotic stability in the dynamical systems sense. An equilibrium
is called asymptotic stable, if it is stable and every initial point sufficiently close to the
equilibrium converges to it. Again, with Remark 2.1 in mind, both notions are related,
although they have a different meaning.

(c) Note that, the notion of ’convergent’ does not include any characterization of the speed
or rate of convergence. We will address this issue later in Section 4.

2.2. Circulant Topology

The focus of this article lies in the dynamical analysis of (3) with a circulant interaction
topology. This is best illustrated by an example as in Figure 2, where vertices of the
interaction graph are arranged in a circle and labelled accordingly. We deliberately refer to
vertices instead of robots, as the illustration does not correspond to the physical locations
of the individual robots but only illustrates the structure of their interactions. Vertex i is
influenced by its k-th neighbor to the left/right in the circle if and only if all of the robots are
influenced by their k-th neighbor to the left/right and all of them react to that neighbors’
position in the same way. In particular, the interaction graph is circulant if and only if there
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Figure 2: Illustration of an interaction graph with circulant topology. Each vertex is
influenced by its second neighbor on the left and its first neighbor on the right.

are integers 0 ≤ s1 < · · · < sk ≤ N − 1 – sometimes referred to as jumps – such that

I(i) = (i+ s1 mod N, . . . , i+ sk mod N)1

Note that this fixes the order of I(i) to be increasing modN starting from i.
This prescribed circulant interaction structure implies a certain structure of its adjacency

matrix A ∈ { 0, 1 }N×N and weight matrix W ∈ RN×N , i.e., both are circulant matrices
defined by

A = circ(a0, a1, . . . , aN−1) :=


a0 a1 · · · aN−2 aN−1
aN−1 a0 a1 aN−2

... aN−1 a0
. . .

...

a2
. . .

. . . a1
a1 a2 · · · aN−1 a0

 ∈ { 0, 1 }N×N ,

W = circ(w0, w1, . . . , wN−1) :=


w0 w1 · · · wN−2 wN−1
wN−1 w0 w1 wN−2

... wN−1 w0
. . .

...

w2
. . .

. . . w1

w1 w2 · · · wN−1 w0

 ∈ RN×N .

Thus, A and W are fully specified by a vector a ∈ { 0, 1 }N and w ∈ RN respectively,
which are cyclically permuted/shifted in each row. In this sense, we say a = (a0, . . . , aN−1)
(w = (w0, . . . , wN−1)) generates the circulant matrix A (W ) and therefore the underlying
graph and topology. Hence, for a circulant adjacency matrix it is sufficient to specify the
robots j that influence the first robot. This structure can also by characterized by noting
that the (i, j)-th entry of A (W ) is given by

Ai,j = a(j−i) mod N resp. Wi,j = w(j−i) mod N .

1i+ s mod N = i+ s, if i+ s < N ; i+ s−N, if i+ s ≥ N.
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For instance, the vector a = (0, 1, 0, . . . , 0, 1, 0) ∈ { 0, 1 }N generates the adjacency matrix

A =



0 1 0 · · · 0 1 0
0 0 1 0 · · · 0 1
1 0 0 1 0 · · · 0
...

...
...

...
0 0 0 · · · 0 0 1
1 0 0 · · · 1 0 0


,

which encodes the interaction graph given in Figure 2.

Example 2.4. As a first running example we will consider the N-bug problem [WK69]. In
this protocol each robot/vertex i is only influenced by its first right neighbor, which yields
a (non-symmetric) circulant interaction structure of the form A = circ(0, 1, 0 . . . , 0). Here,
we only have one jump s1 = 1 and in Figure 3 we illustrate its topology.

...

0
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2 3

4

5

Figure 3: Illustration of the circulant interaction graph of the N-bug problem.

The additional symmetry that is introduced into an interaction graph by circulant in-
teraction structure has the convenient side-effect that weak and strong connectivity are
equivalent. This is due to the observation, that given an edge e = (j, i) ∈ E one can con-
struct a directed path from i to j, which then replaces every edge, that has the ’wrong’
direction in an undirected path.

Lemma 2.5. Let G = ({ 0, . . . , N − 1 } , E) be a circulant interaction graph determined by
the jumps 0 ≤ s1 < · · · < sk ≤ N − 1. Then the following are equivalent

(i) G is weakly connected.

(ii) G is strongly connected.

Proof. By definition of both notions we only have to prove the first implication.
(i) =⇒ (ii): Consider an arbitrary edge (j, i) ∈ E. By definition there exists r ∈
{ 1, . . . , k } such that j = i + sr mod N . Then also (j + sr mod N, j) ∈ E, as well as
(j + 2sr mod N, j + sr mod N) ∈ E and so forth. This can be continued to show that
(j + lsr mod N, j + (l − 1)sr mod N) ∈ E for all r ≥ 1. Their concatenation obviously
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constitutes a directed path. In particular, continuing until l = N − 1, we obtain a directed
path from j + (N − 1)sr mod N to j. Since j + (N − 1)sr mod N = i + Nsr mod N = i,
this is a directed path from i to j – in addition to the directed edge from j to i.

In conclusion, for every directed edge in the graph there exists a directed path in the
opposite direction. Hence, for every undirected path from j to i there is also a directed
path from j to i that we obtain by replacing all edges in the ’wrong’ direction with the
directed path in the opposite direction. In particular, if the graph is assumed to be weakly
connected it is strongly connected as well.

While connectivity can be computed efficiently, it is occasionally useful to have a purely
combinatorical condition at hand. We state the following result from graph theory without
a proof.

Proposition 2.6 ([vD86, Corollary 1]). Consider the circulant interaction graph G =
({ 0, . . . , N − 1 } , E) determined by the jumps 0 ≤ s1 < · · · sk ≤ N−1. Then G is connected
if and only if

gcd(N, s1, . . . , sk) = 1, (4)

where gcd denotes the greatest common divisor. In particular, (4) is satisfied if 1 ∈
{ s1, . . . , sk } or if N − 1 ∈ { s1, . . . , sk } (e.g., for the N-bug problem, see Example 2.4).

Remark 2.7. The same result has also been shown for undirected – i.e., symmetric –
circulant graphs [BT84, Proposition 1]. In particular, this implies that the interaction
graph is weakly connected if and only if gcd(N, s1, . . . , sk) = 1. This should come as no
surprise, since we know that weak and strong connectivity are equivalent for circulant graphs
from Lemma 2.5. In fact, this result in combination with Proposition 2.6 proves Lemma 2.5.

Symmetric Topology A natural special case to consider is when the interaction between
the robots are symmetric in the sense that, if robot j influences robot i, then robot i also
influences robot j and these influences are of the same nature. In terms of the interaction
graph, this means that (j, i) ∈ E if and only if (i, j) ∈ E and these edges have the same
weight. In Figure 2, this could have been illustrated by drawing arrow tips on both sides of
each arrow instead of only one. As a result the adjacency matrix A ∈ { 0, 1 }N×N and the
weight matrix W ∈ RN×N are symmetric, i.e., ai,j = aj,i (wi,j = wj,i) for i, j = 0, . . . , N − 1
or simply AT = A (W T = W ), where AT denotes the transposed of A.

For a circulant and symmetric matrix A this yields fewer degrees of freedom. In fact, in
this case we have the extra condition

aN−i = ai, i = 1, . . . , N − 1,

and A is determined by only bN2 c+ 1 elements a0, . . . , abN
2
c (analogously for W ). Thus, we

obtain

A =


a0 a1 · · · a2 a1
a1 a0 a1 a2
... a1 a0

. . .
...

a2
. . .

. . . a1
a1 a2 · · · a1 a0

 ∈ { 0, 1 }N×N and W =


w0 w1 · · · w2 w1

w1 w0 w1 w2
... w1 w0

. . .
...

w2
. . .

. . . w1

w1 w2 · · · w1 w0

 ∈ RN×N .
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Example 2.8.

(a) As a second running example we will consider the Go-To-The-Middle protocol (cf.
[KMadH11, Kli10]). In contrast to theN-bug problem, the underlying interaction graph
is symmetric. Its adjacency matrix is given by A = circ(0, 1, 0, . . . , 1), i.e., robot/vertex
i is influenced by its first left and right neighbor and the jumps are s1 = 1 and s2 =
N − 1. In particular, it is connected (see Proposition 2.6). In Figure 4a we illustrate
its symmetric interaction graph.

(b) Finally as a third example, we take a look at the (global) Go-To-The-Average pro-
tocol (also called Go-To-The-Center-Of-Gravity in [CP04]). In this model every
robot has global vision and is therefore influenced by all robots (including itself). Hence,
the corresponding interaction graph is complete and its adjacency matrix can be written
as A = circ(1, 1, . . . , 1). In Figure 4b its complete interaction graph is illustrated.

...

N

1

2 3

4

5

(a) Interaction graph of the Go-To-The-
Middle protocol

...

N

1

2 3

4

5

(b) Complete interaction graph of the Go-To-
The-Average protocol

Figure 4: Illustration of circulant and symmetric interaction graphs. Note that the arrow
tips may have been omitted due to its symmetric nature.

3. Gathering Models

In this section we discuss and analyze some classes of gathering models (1) for a fixed
interaction graph G = (V,E).

3.1. Linear Protocols

A first model to consider is the case where each robot adapts its velocity vector as a linear
combination of its neighbors, i.e., f is linear and (1) has the form

żi(t) = −zi +

N−1∑
i=0

wi,jzj , (5)
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where zi = (xi, yi) ∈ R2, Z = (z0, . . . , zN−1) ∈ R2N and wi,j ∈ R are the corresponding
weights in the weight matrix W ∈ RN×N . Note that, we do not assume any structural
properties on the interaction graph, respectively the weight matrix, yet. This linear system
(5) yields a full (linear) system of the form (3) that can be written as a matrix-vector
product by

Ż = (−I2N + W)Z, (6)

where I2N ∈ R2N×2N denotes the 2N × 2N -dimensional identity matrix and W ∈ R2N×2N

is given by the Kronecker product of W ∈ RN×N and I2 ∈ R2×2, i.e.,

W := W ⊗ I2 =


w0,0 0 w0,1 0 · · · w0,N−1 0

0 w0,0 0 w0,1 · · · 0 w0,N−1
...

...
...

...
...

...
...

wN−1,0 0 wN−1,1 0 · · · wN−1,N−1 0
0 wN−1,0 0 wN−1,1 · · · 0 wN−1,N−1

 .

In the coordinates Z̃ = (X,Y ) ∈ R2N , the linear system (6) takes the form

˙̃
Z =

(
−I2N + W̃

)
Z̃ (7)

with

W̃ := I2 ⊗W =

(
W 0

0 W

)
∈ R2N×2N ,

which due to its block-diagonal structure is easier to analyze in the following.

Remark 3.1. A similar class of protocols has been studied in [KMadH11]. There, the
authors investigate robots that move in discrete rounds to a linear combination of their
neighboring robots’ positions. Some of their results guaranteeing that a general linear
system describes a ’working’, protocol resemble those we deduce in Section 3.3 below. We
indicate the corresponding results from that reference. In contrast to that, we emphasize
that the different aim of the protocol and the different model of time considered in this
article require entirely different proofs.

Remark 3.2. By definition, existing edges in the interaction graph can have both positive
or negative weights. However, adapting the velocity vector according to a linear strategy
as in (5) a negative weight essentially forces a robot to compute the position of a neighbor
reflected at the origin. In particular, it would force the robot to intentionally move away from
neighbors with negatively weighted inputs. Thus, one might argue that negative weights are
unnatural (for linear systems). In fact, we will occasionally restrict to non-negative weights
below (weight 0 for interactions that are not present in the interaction graph).

3.2. Extension to the Nonlinear Case

Before we enter into the dynamical analysis of linear gathering protocols, we want to present
some reasoning for the focus on this seemingly restrictive class. In fact, note that the
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velocity vector that each robot computes according to the linear protocol modeled in (5) is
completely unrestricted and could for example become arbitrarily long. Moreover, for linear
models the robots will only gather in the limit t→∞. While such an observation causes no
difficulties in the mathematical analysis, it is at the least problematic for the application:
robots cannot move with arbitrary speed and should gather in finite time. At first glance
the consideration of linear systems is not appropriate since they model unrealistic protocols.

However, in commonly investigated protocols robots compute the direction as a linear
combination of the (relative) positions of their neighbors. Then, the idea is to have the
robots move with bounded speed until they are gathered. Thus the velocity vector is given
by some normalization of the direction vector (cf. [KMadH19]). In mathematical terms, such
a normalization is realized by applying a nonlinear function N : R2 → R2 with N (0) = 0
to the direction, that is, the model (5) is adapted to

żi = N (−zi + f(Z))

= N

(
−zi +

N−1∑
i=0

wi,jzj

)
.

(8)

Since we are interested in gathering protocols and their dynamics, we have to investigate
gathering points which we assume to be equilibrium points of (8) and their stability prop-
erties – that is, whether other solutions converge to them and the speed by which they do
(see Remarks 2.1 and 2.3). One of the great strengths of the dynamical systems theory is
that these properties can at least locally – that is, if all robots are sufficiently close to a
gathering point – be deduced from a linear approximation of the nonlinear system. To be
slightly more precise, we arrange all right hand sides of (8) into a single vector that we
denote by FN (Z) and rewrite the system in vector notation Ż = FN (Z), as before. Then
locally in a neighborhood of any gathering point Z∗ ∈ R2N the dynamics of the nonlinear
system (8) is topologically conjugate to that of the linear system

ζ̇ = DFN (Z∗)ζ, (9)

where ζ = Z−Z∗ are transformed coordinates andDFN (Z∗) is the Jacobian at the gathering
point – this requires N to be continuously differentiable. In particular, the local stability
properties of Z∗ ∈ R2N are are the same as the stability properties of the equilibrium
0 ∈ R2N of the linear system (9) and therefore they are determined by the spectral properties
of DFN (Z∗). For a more detailed exposition of this principle consider for example [HSD13,
Section 8], and the famous Hartman-Grobman-Theorem (e.g. [Tes12]).

Using the chain rule we can write the Jacobian DFN (Z∗) as

DFN (Z∗) =

(
IN ⊗DN

(
−z∗ +

N−1∑
i=0

wi,jz
∗

))
(−I2N + W)

=

(
IN ⊗DN

(
−z∗ +

N−1∑
i=0

wi,jz
∗

))
((−IN +W )⊗ I2)

= (−IN +W )⊗DN

(
−z∗ +

N−1∑
i=0

wi,jz
∗

)
.

(10)
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Later on, we derive that the consistency condition
∑N−1

j=0 wi,j = 1 is equivalent to the linear
protocol (5) to be stable (see Proposition 3.4), such that it is reasonable to simplify (10) to

DFN (Z∗) = (−IN +W )⊗DN (0).

which is a ’Kronecker-scaled’ version of (6) by the Jacobian DN (0) ∈ R2×2. Thus, in order
to preserve the structure in (6) and, in particular, not introduce any mixed terms it suffices
to require

DN (0) = cI2, (11)

for some c ∈ R, i.e., DN (0) is a multiple of the identity matrix. In this case we have

DFN (Z∗) = (−IN +W )⊗ (cI2)

= −cI2N + cW ⊗ I2

= −I2N + (1− c)I2N + cW ⊗ I2

= −I2N + ((1− c)IN + cW )⊗ I2,

and it follows that the linearized system (9) is precisely of the form (6) with weight matrix
W ′ = (1 − c)IN + cW ∈ RN×N . In particular, for c = 1 we have W ′ = W and all the
results on linear systems that we present below, can be directly applied locally to nonlinear
systems of the form (8) as well. For instance, Theorem 3.9 below tells us that (8) is (locally)
gathering if and only if the corresponding non-normalized system (5) with weight matrix
W ∈ RN×N is gathering.

Remark 3.3.

(a) For instance, the requirement in (11) is satisfied if N (x, y) = (n(x, y), n(y, x))T for some
smooth function n : R2 → R such that n(x,−y) = n(x, y) for all x, y ∈ R. In this case,
we have c = ∂

∂xn(0, 0) = ∂
∂yn(0, 0).

(b) A natural simple example used in distributed computing to ensure that every robot
moves with a bound speed is just to scale the direction vector such that it has constant
length, e.g., length one. This leads to a normalization function N (x, y) = 1

‖(x,y)‖(x, y)T .

However, as this is not differentiable in (0, 0)T , i.e., in a gathering point, and cannot be
used for our analysis, we instead propose a ’smooth’ version thereof such as

Nε(x, y) =
1

‖(x, y)‖+ exp
(
−‖(x,y)‖

2

ε

)(x, y)T , (12)

with ε > 0. Note that Nε is of the form discussed in (a) with c = 1 and hence is a

feasible choice. For large ‖(x, y)‖, the term exp
(
−‖(x,y)‖

2

ε

)
in the denominator of Nε

can be neglected, such that Nε behaves like N , i.e., the desired scaling by 1
‖(x,y)‖ . In the

limit ‖(x, y)‖ → 0 the exponential term becomes one, and hence the entire prefactor.
Thus, close to the gathering point the nonlinear system (8) becomes almost linear.
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(c) In general, as any smoothing like (12) is a modification of any non-smooth (nonlinear)
protocol, one has to analyze whether the modified strategy still is provably correct
(e.g., gathering) in the distributed computing sense and efficient, or how they have to
be further modified in order to maintain such properties. In particular, the effects of
taking the limit Nε → N for ε → 0 have to be studied. We leave this analysis for
further research.

3.3. Linear Gathering Models

The behavior of linear systems of ordinary differential equations is well understood (e.g.,
[Tes12, Xie10]). We apply the theory to systems of the form (5) for arbitrary weight matrices
W to deduce several basic properties that W has to satisfy in order for system (5) to model
a gathering protocol. As these considerations become rather technical, we only summarize
the reasoning here and postpone technically detailed proofs to Appendix A. References in
results are to be understood in light of Remark 3.1.

It turns out that the form (7) is most useful for these considerations, as solutions can
be derived in closed form that depends only on spectral properties of the system matrix
−I2N + W̃ which in turn can be deduced from spectral properties of W . More precisely,
solutions to (7) are linear combinations of the so-called fundamental solutions

Z̃xi,j(t) = e(λi−1)t
(

tj−1

(j − 1)!
(ξi,1, 0) +

tj−2

(j − 2)!
(ξi,2, 0) + · · ·+ t(ξi,j−1, 0) + (ξi,j , 0)

)
,

Z̃yi,j(t) = e(λi−1)t
(

tj−1

(j − 1)!
(0, ξi,1) +

tj−2

(j − 2)!
(0, ξi,2) + · · ·+ t(0, ξi,j−1) + (0, ξi,j)

)
,

(13)

where λ1, . . . , λk are the eigenvalues of W counting geometric multiplicities and

ξ1,1, . . . , ξ1,m1 , . . . , ξk,1, . . . , ξk,mk
∈ CN (14)

are the corresponding eigenvectors and generalized eigenvectors – i.e., (W−λiIN )ξi,1 = 0 and
(W −λiIN )ξi,j = ξi,j−1 for i = 1, . . . , k and j = 2, . . . ,mi. If λi is a complex eigenvalue then
so is its complex conjugate λi (= λi+1 without loss of generality). In this case we replace the
corresponding fundamental solutions Z̃x,yi,j (t) and Z̃x,yi+1,j(t) by its real part <(Z̃x,yi,j (t)) and its

imaginary =(Z̃x,yi,j (t)). Note that this representation is not very useful to determine a closed
form of the solutions for the robot’s individual behavior according to the non-transformed
system (5). However, it can be used to derive the results in the remainder of this subsection,
which can all be be traced back to the solutions of (7).

First, we investigate when linear protocols are stable. By definition this requires the
system (5) to be in equilibrium for any fully synchronous configuration Z∗ = (z∗, . . . , z∗) ∈
R2N . From the transformed system (7) we can immediately read off that this means that
any point X∗ = (x∗, . . . , x∗) ∈ RN is a zero of −(IN +W ). It can readily be seen that this
is case if and only if X∗ is an eigenvector to the eigenvalue 1 of W , which in turn requires
all rows of the weight matrix to sum to 1. This shows the following proposition.

Proposition 3.4 (cf. [KMadH11, Proposition 1 (b)]). The following are equivalent:

(i) The protocol (5) is stable (cf. (2)), i.e., any gathering point Z∗ = (z∗, . . . , z∗) ∈ R2N

is an equilibrium point.
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(ii) The weight matrix W ∈ RN×N has an eigenvalue 1 with corresponding eigenvector
(1, . . . , 1)T ∈ RN .

(iii) The weight matrix W ∈ RN×N has constant row sum, i.e.,
∑N−1

j=0 wi,j = 1 for all
i ∈ { 0, . . . , N − 1 } .

As the condition (iii) in Proposition 3.4 determines when a protocol is stable, we define
the following.

Definition 3.5. A weight matrix W ∈ RN×N is said to be consistent if it has constant
row sum

∑N−1
j=0 wi,j = 1 for any i ∈ { 0, . . . , N − 1 }. In particular, a circulant matrix

W = circ(w) ∈ RN×N is consistent, if
∑N−1

i=0 wi = 1.

Remark 3.6. We do not refer to consistent weight matrices as stable matrices, as this term
is commonly used in the engineering literature to refer to a matrix for which all eigenvalues
have negative real parts.

By a similar argument we may prove a slightly stronger statement. In fact, (7) shows
that any equilibrium point of the transformed system is necessarily an eigenvector of the
weight matrix corresponding to the eigenvalue 1. Together with Proposition 3.4 this shows:

Proposition 3.7 (cf. [KMadH11, Proposition 1 (b)]). The following are equivalent:

(i) The subspace Syn =
{
Z∗ = (z∗, . . . , z∗) z∗ ∈ R2

}
⊆ R2N consists of all equilibrium

points of (5).

(ii) The weight matrix W has an eigenvalue 1 with eigenvector (1, . . . , 1)T ∈ RN whose
geometric multiplicity is 1.

Next, we investigate when linear protocols are convergent. This property can essentially
be read off from the fundamental solutions (13) which form any solution of the system via
linear combinations. It can readily be seen that whenever an eigenvalue satisfies <(λ) 6= 1
the corresponding fundamental solutions are dominated by the exponential for t → ∞. In
particular, they converge to 0 if <(λ) < 1 and they ’diverge’ if <(λ) > 1. For an eigenvalue
with <(λ) = 1 the exponential is taken of a purely imaginary number if λ 6= 1. Hence, real
and imaginary parts of the corresponding fundamental solution are given by a (periodic)
trigonometric function multiplied with a polynomial expression, which do not converge.
Finally, the eigenvalue λ = 1 causes the exponential to be constant and the corresponding
fundamental solution to be given by the polynomial expressions. These converge if and
only if they are in fact constant, which can only happen if the eigenvalue has only true
eigenvectors. These considerations summarize to the following result.

Proposition 3.8 (cf. [KMadH11, Lemma 1]). The following are equivalent:

(i) For any initial configuration Z(0) = (z1(0), . . . , zN (0)) ∈ R2N the solution of (5)
converges to an equilibrium point Z ∈ R2N .

(ii) All eigenvalues λ ∈ C of W ∈ RN×N satisfy <(λ) < 1 or λ = 1, and if 1 is an
eigenvalue of W ∈ RN×N then its algebraic and geometric multiplicities agree.
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The combination of Propositions 3.7 and 3.8 provides the main characterization of linear
gathering protocols.

Theorem 3.9 (cf. [KMadH11, Theorem 1]). A linear protocol modeled by (5) is gathering
– i.e., it is in equilibrium at any gathering point and converges to a gathering point for any
initial configuration (see Definition 2.2) – if and only if the weight matrix W ∈ RN×N has
a simple eigenvalue 1 with eigenvector (1, . . . , 1)T ∈ RN and all other eigenvalues λ ∈ C
satisfy <(λ) < 1.

While the necessary and sufficient condition in the previous theorem is purely algebraic,
we can also use Proposition 3.7 to prove a necessary condition on the interaction structure
of the robots to allow for a linear protocol to be gathering. In fact, if the interaction graph is
not (weakly) connected, there are multiple groups of robots that do not communicate with
each other. Then these groups might gather individually, but the protocol cannot guarantee
that all groups chose the same gathering point. This is the statement of the following.

Proposition 3.10 (cf. [KMadH11, Lemma 2]). Consider a linear protocol modeled by (5)
with weight matrix W ∈ RN×N . If the protocol is gathering then the interaction graph is
(weakly) connected.

Remark 3.11. More precisely it is already the property of being convergent, that implies
(weak) connectivity.

On the other hand, if we restrict ourselves to matrices with non-negative weights as
suggested in Remark 3.2, we can also formulate a sufficient condition for a protocol to be
gathering. If the interaction graph is strongly connected we can apply the Perron-Frobenius
theorem for non-negative matrices (e.g. [Gan09, Theorem 2]). It tells us that the weight
matrix has a simple real eigenvalue – called the Perron-Frobenius eigenvalue – that is in
between the minimal and the maximal row sums and all other eigenvalues have real parts
that are strictly smaller than the Perron-Frobenius eigenvalue. Hence, if the weight matrix
is also consistent the Perron-Frobenius eigenvalue is 1 and the weight matrix satisfies the
conditions in Theorem 3.9.

Proposition 3.12 (cf. [KMadH11, Lemma 2]). Consider a linear protocol modeled by (5)
with non-negative weights wi,j ∈ R. If the interaction graph is strongly connected and the

weight matrix is consistent – i.e.,
∑N−1

j=0 wi,j = 1 for all i ∈ { 0, . . . , N − 1 } – then the
protocol is gathering.

Next, we prove that for any linear gathering protocol the gathering point is always the
average of the initial positions. As we have discussed above any solution to (7) is a linear
combination of the fundamental solutions (13) and for a gathering protocol all of them
converge to 0 except for the fundamental solutions corresponding to the simple eigenvalue
1 with eigenvector ξ = (1, . . . , 1)T ∈ RN . The coefficients of this linear combination are
constant and determined by the initial configuration Z̃(0) = (X(0), Y (0)) ∈ R2. In fact the
coefficients of X(0) and Y (0) corresponding to this basis vector are given by

a =
〈X(0), ξ〉
〈ξ, ξ〉

=
1

N

N∑
i=1

xi(0), b =
〈Y (0), ξ〉
〈ξ, ξ〉

=
1

N

N∑
i=1

yi(0).
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Thus, the protocol converges to a(ξ, 0)T + b(0, ξ)T which has the average x initial values in
its first N entries and the average y initial values in its last N entries.

Proposition 3.13. Consider a linear gathering protocol with weight matrix W ∈ RN×N
and an initial configuration of the robots z0(0), . . . , zN−1(0) ∈ R2. Then, the position zi(t)
of any robot i ∈ { 0, . . . , N − 1 } converges to the gathering point z∗ = 1

N

∑N−1
i=0 zi(0) ∈ R2,

i.e., the average of the initial positions, for t→∞.

Robots with Limited Vision We end this section with a brief outlook on robots with a
limited communication range. If we consider robots with limited vision, it is important that
under the protocol – and therefore the model – two communicating robots do not lose sight
of each other. Otherwise, it cannot be guaranteed by a local deterministic protocol that
they will ever regain visibility of each other [KMadH19]. We state a rather simple sufficient
condition guaranteeing that visibility is preserved. Recall that a matrix W ∈ RN×N is
called non-defective if and only if it is diagonalizable over R, i.e., all its eigenvalues are
real and their algebraic and geometric multiplicities agree. For example, any symmetric
weight matrix, i.e., if wi,j = wj,i for all i, j, is non-defective, since it has real eigenvalues
only and is diagonalizable. For a non-defective matrix all fundamental solutions are of the
form exponential multiplied with a constant vector. Summarizing the linear combination of
a solution and transforming back into the original coordinates, the same can be said about
the individual robots zi(t) and by linearity also for differences of two robots. If the protocol
is assumed to be gathering, all exponentials are strictly decreasing in t or constant. In
particular, the distance between two arbitrary robots cannot increase.

Proposition 3.14. Consider a linear gathering protocol with weight matrix W ∈ RN×N
and a valid initial configuration z0(0), . . . , zN−1(0) ∈ R2, that is,

‖zi(0)− zj(0)‖ ≤ C for all (j, i) ∈ E,

where G = (V,E) is the interaction graph and C > 0 the fixed visibility radius. If W ∈ RN×N
is non-defective then visibility is preserved under the dynamics, i.e.,

‖zi(t)− zj(t)‖ ≤ C for all t ≥ 0 and (j, i) ∈ E.

For this result to hold the diagonalizability condition on the weight matrix is indeed
crucial. Consinder, for example,

W =

1 0 0
1 0 0
3 −2 0

 .

This matrix models a gathering protocol: its eigenvalues are 1 and 0 which is defective
and it has row sum 1. The initial condition z0(0) = (0, 0), z1(0) = (12(C + ε), 0), z2(0) =
(12(−C + ε), 0) satisfies

‖z0(0)− z1(0)‖ =
1

2
(C + ε)

‖z1(0)− z2(0)‖ = C

‖z0(0)− z2(0)‖ =
1

2
(C − ε).
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Hence, it is valid as long as 0 < ε < C
2 . Using the fundamental solutions (13), one may

compute the corresponding solutions z0(t), z1(t), z2(t), as well as the norm of the differences
squared ‖zi(t) − zj(t)‖2 for i 6= j. Differentiating this expressions for i = 1, j = 2 with
respect to t and substituting t = 0, one observes

d

dt
‖z1(t)− z2(t)‖

∣∣∣∣
t=0

= ε > 0.

Thus, visibility between robots 1 and 2 will be lost for small t > 0.

3.4. Linear Circulant Gathering Models

As the main focus of this article is linear gathering protocols where the interaction structure
is circulant (cf. Section 2.2), we assume the weight matrix W = circ(w0, . . . , wN−1) ∈ RN×N
to be a circulant matrix generated by a weight vector w = (w0, . . . , wN−1)

T ∈ RN from now
on. We begin this section by specifying the findings of Section 3.3 for this class. In particular,
we provide necessary and sufficient conditions for a circulant protocol to be gathering.

Proposition 3.15. Consider a circulant linear protocol modeled by (5) with weight matrix
W = circ(w0, . . . , wN−1) ∈ RN×N . If the protocol is gathering, then the interaction graph
is strongly connected and W ∈ RN×N is consistent, i.e.,

∑N−1
j=0 wi,j =

∑N−1
j=0 wj = 1 for all

i ∈ { 0, . . . , N − 1 }.

Proof. Assume the protocol is gathering. Then Proposition 3.10 implies that the interaction
graph is weakly connected. As it is also circulant, it is therefore also strongly connected
due to Lemma 2.5. Furthermore, due to Proposition 3.4, all rows of the weight matrix sum
to 1 and for all i ∈ { 0, . . . , N − 1 } we obtain

1 =

N−1∑
j=0

wi,j =

N−1∑
j=0

wj ,

since all rows of W contain the same set of entries.

The main result of this section specifies necessary and sufficient conditions for a circulant
linear protocol to be gathering under the assumption of non-negative weights, as suggested
in Remark 3.2. The theorem is a corollary of Propositions 3.12 and 3.15 applied to this
class of systems.

Theorem 3.16. Consider a circulant linear protocol modeled by (5) with weight matrix
W = circ(w0, . . . , wN−1) ∈ RN×N where wi ≥ 0 for i = 0, . . . , N − 1. Then the following
are equivalent:

(i) The protocol is gathering.

(ii) The interaction graph is connected and the weight matrix is consistent,
∑N−1

i=0 wi = 1.

Remark 3.17. The consistency condition
∑N−1

i=0 wi = 1 for non-negative weights implies
0 ≤ wi ≤ 1 for all i ∈ { 0, . . . , N − 1 }. In this case W ∈ RN×N is a stochastic matrix. As
row and column sums coincide for circulant matrices, W ∈ RN×N is in fact doubly stochastic
under these assumptions.
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Example 3.18. Consider again our running Examples 2.4 and 2.8.

(a) Applying the results of Theorem 3.16 to the N-bug problem yields that it is gathering if
and only if its generating weight vector w ∈ RN has the form w = (0, 1, 0, . . . , 0)T ∈ RN .

(b) For the Go-To-The-Middle protocol, Theorem 3.16 yields that the model is gathering
if and only if w = (0, 12 , 0, . . . ,

1
2)T ∈ RN , since the weight matrix W ∈ RN×N is

symmetric.

(c) The weight vector w ∈ RN of the Go-To-The-Average protocol is given by w =
( 1
N , . . . ,

1
N )T ∈ RN , i.e., every robot (including itself) has the same weight. Again,

Theorem 3.16 yields that this protocol is indeed gathering. Note that every robot
computes the same target point, i.e., the average of all robots’ position which then is
also the gathering point of the protocol (see Proposition 3.13).

The characterization of gathering protocols in Theorem 3.16 distinguishes circulant pro-
tocols from arbitrary linear ones. For example, consider the non-circulant weight matrix

W =

0 1
2

1
2

1
2 0 1

2
0 0 1

 ∈ R3×3.

All its rows sum to 1 and its eigenvalues are 1, 12 ,−
1
2 . Thus, according to Proposition 3.4

and Theorem 3.9 it is gathering. However, the underlying interaction graph is G = (V,E)
with

V = { 0, 1, 2 } and E = { (0, 1), (1, 0), (2, 0), (2, 1), (2, 2) } .

There is no directed path from vertices 0 or 1 to vertex 2 so that the interaction graph is
not strongly connected – it is weakly connected, however.

Limited Vision As we have seen in Section 3.3, linear communication strategies with non-
defective weight matrices guarantee that two communicating robots will not lose sight of
each other. Unfortunately, circulant communication strategies do not automatically fall into
this category. In fact, we may construct examples with a circulant weight matrix, that do
not preserve visibility. For instance, consider the circulant weight matrix

W =

 0 5 −4
−4 0 5
5 −4 0

 ∈ R3×3,

which describes a circulant linear gathering strategy: its eigenvalues are 1 and −1
2 ± i3

5/2

2 ,
its row sum equals 1. The initial condition z0(0) = (0, 0), z1(0) = 1√

10
(−C, 3C), z2(0) =

1√
10

(−2C, 2C) satisfies

‖z0(0)− z1(0)‖2 = C2

‖z1(0)− z2(0)‖2 =
1

5
C2

‖z0(0)− z2(0)‖2 =
4

5
C2.
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Hence, it is valid, since ‖zi(0)−zj(0)‖ ≤ C for all i, j. Using the fundamental solutions (13),
one may compute the corresponding solutions z0(t), z1(t), z2(t), as well as the norm of the
differences squared ‖zi(t)− zj(t)‖2 for i 6= j. Differentiating these expressions with respect
to t and substituting t = 0, one observes

d

dt
‖z0(t)− z1(t)‖2

∣∣∣∣
t=0

=
12

5
C2 > 0

d

dt
‖z1(t)− z2(t)‖2

∣∣∣∣
t=0

=
6

5
C2

d

dt
‖z0(t)− z2(t)‖2

∣∣∣∣
t=0

= −48

5
C2

Thus, the distance between robots 0 and 1 will increase for small t > 0 by continuity of the
solution z(t) and therefore the robots will lose sight of each other.

However, in the previous example, the loss of visibility depends crucially on the fact that
there are weights with a negative sign. If on the other hand we restrict to communication
strategies with non-negative weights, we may prove that visibility is preserved by gathering
protocols. As before, the proof is technical and therefore postponed to Appendix A. It
exploits the fact that a gathering circulant linear protocol has a consistent weight matrix
which can be used to show that the two maximally distant robots cannot move further away
from each other by estimating the time-derivative of the norm of their distance squared.
In fact, it is already the fact that the weight matrix is consistent that implies visibility is
preserved – i.e., stability of the circulant protocol with non-negative weights suffices.

Proposition 3.19. Consider a circulant linear gathering protocol with weight matrix W =
circ(w0, . . . , wN−1) ∈ RN×N and assume that all weights are non-negative, i.e., wi ≥ 0
for all i ∈ { 0, . . . , N − 1 }. Furthermore, let z0(0), . . . , zN−1(0) ∈ R2 be a valid initial
configuration, that is,

‖zi(0)− zj(0)‖ ≤ C for all (j, i) ∈ E,

where G = (V,E) is the interaction graph and C > 0 the fixed visibility radius. Then,
visibility is preserved under the dynamics, i.e.,

‖zi(t)− zj(t)‖ ≤ C for all t ≥ 0 and (j, i) ∈ E.

Note that, in particular, Proposition 3.19 applies to our considered running examples,
that is, the N-bug problem, the Go-To-The-Middle and the Go-To-The-Average
protocol (see Example 3.18).

4. A hierarchy of convergence rates in circulant gathering systems

In the previous parts of the article, we have studied conditions for linear (circulant) protocols
to be gathering in great detail. For a circulant interaction graph we can actually exploit
its structure even more to describe the dynamics of such protocols much more precisely.
In particular, we again assume the weight matrix W ∈ RN×N to be circulant generated
by a vector w = (w0, w1, . . . , wN−1) ∈ RN . As indicated in Section 3.3, the longtime
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behavior of (5) mainly depends on the spectral properties of W ∈ RN×N . Luckily, all
eigenvalues and eigenvectors can be analytically derived for such a circulant matrix (see e.g.
[Dav79, Gra05, Tee07]).

Proposition 4.1. Let W ∈ RN×N be a circulant matrix generated by a vector w =
(w0, . . . , wN−1)

T ∈ RN . Then its eigenvectors are given by

vj = (1, ωj , ω2j , . . . , ω(N−1)j)T ∈ CN for j = 0, . . . , N − 1, (15)

where ω = exp
(
2πi
N

)
is a primitive N -th root of unity. The corresponding eigenvalues are

given by

λj =

N−1∑
i=0

wiω
ij ∈ C. (16)

Proof. For given j = 0, . . . , N − 1 we compute the i-th entry of Wvj by

(Wvj)i =
N−1∑
k=0

wi,k(vj)k =
N−1∑
k=0

w(k−i) mod N ωkj = ωij
N−1∑
k=0

w(k−i) mod N ω((k−i) mod N)j .

Now, the remaining sum is in fact independent of i since both wk and ωk are periodic in k,
which yields after rearranging the summation

(Wvj)i = ωij
N−1∑
k=0

wk ω
kj = λjω

ij = λj(vj)i.

Remark 4.2.

(a) For j = 0, we obtain the constant vector v0 = (1, . . . , 1)T ∈ RN as an eigenvector with
corresponding (simple) eigenvalue λ0 =

∑N−1
i=0 wi, which has to be one for a gathering

protocol (cf. Proposition 3.4).

(b) Since W ∈ RN×N has real-valued entries we immediately can compute

λj = λN−j for j = 1, . . . , N − 1, (17)

which implies for even N = 2k that λk ∈ R is real-valued. Moreover, if W ∈ RN×N is
symmetric, i.e., it encodes a symmetric topology, then (17) reduces to

λj = λN−j for j = 1, . . . , N − 1,

and the entire set of eigenvalues λ1, λ2, . . . , λbN−1
2
c ∈ R is duplicated.

(c) By definition (15), all eigenvectors vj ∈ CN are independent of the generating vector
w ∈ RN . Hence, the spectral decomposition into eigenspaces of any circulant matrix is
identical and only the corresponding eigenvalues differ. In particular, the decomposition
found later in Theorem 4.4 into so–called stable invariant subspaces will be the same
for all circulant gathering systems. In Figure 5 we visualize the eigenvectors vj ∈ C,
j 6= 0, in the complex plane for some N ∈ N.
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(b) N = 7

Figure 5: Visualization of the complex-valued eigenvectors vj ∈ CN , j 6= 0, of a circulant
matrix in the complex plane for (a) N = 6 and (b) N = 7. Here, the number i next to
the blue dots correspond to i-th entry of vj ∈ C. The connections in gray between the
points illustrate the (cyclically) ascending index i = 0, 1, . . . , N − 1. In particular, it does
not indicate any dynamical influences according to an underlying interaction graph, i.e.,
the generating vector w ∈ RN . Note that, by definition all points are on the unit circle
and thus form a regular N -polygon (see (15)). For increasing j, if N = 2k is even, the
N -polygon ’degenerates’ since some entries are the same, while for N = 2k + 1 only the
ordering changes.
Later on, we assign to every entry of vj ∈ C its corresponding robot such that the dots also
represent the position xi = <((vj)i)) and yi = =((vj)i) of the i-th robot in the Eulidean
plane (by changing the axis labels accordingly). Hence, the generating configuration of the
stable invariant subspace Vj ⊆ R2N in the Euclidean plane is also visualized (cf. (23)).

With Proposition 4.1 at hand the fundamental solutions (13) of (7) for a circulant weight
matrix reduce to

Z̃xj (t) = e(λj−1)t
(
vj
0

)
and Z̃yj (t) = e(λj−1)t

(
0
vj

)
for j = 0, . . . , N − 1

as there are no generalized eigenvectors. However, for j 6= 0, the eigenvector vj and its cor-
responding eigenvalue λj is, in general, complex-valued, which gives little to none possibility
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for interpretation in terms of configurations of N ∈ N robots moving in the two-dimensional
Euclidean plane.

To this end, we proceed as follows: Let N = 2k be even or N = 2k+ 1 be odd. First, for
any j = 1, . . . , k, we consider the pair vj ∈ CN and its complex conjugate vj = vN−j ∈ CN

and define the subspace Ṽj ⊆ RN spanned by the real- and imaginary parts of vj and vN−j ,
which is

Ṽj = span (<(vj),=(vj)) ⊆ RN . (18)

For N = 2k even, Ṽk simply becomes Ṽk = span (vk) ⊆ RN , since vk has in fact real-valued
entries (cf. Remark 4.2 (b)).

Note that by construction we have

W
(
<(vj),=(vj)

)
=
(
<(vj),=(vj)

)( <(λj) =(λj)
−=(λj) <(λj)

)
. (19)

since the pair of eigenvalues λj ∈ C and λj = λN−j act as a matrix of the form

Λj =

(
<(λj) =(λj)
−=(λj) <(λj)

)
∈ R2×2.

in the subspace Ṽj ⊆ RN . For N = 2k even, (19) reduces to the eigenvalue equation

Wvk = Λkvk for Λk = λk ∈ R. Moreover, we set Ṽ0 = span (v0) and Λ0 = λ0 = 1.
Using this new decomposition RN =

⊕k
j=0 Ṽj the weight matrix W ∈ RN×N becomes a

block-diagonal matrix of the form

Ṽ −1WṼ =


Λ0

Λ1

. . .

Λk

 ∈ RN×N with Ṽ =
(
Ṽ0 · · · Ṽk

)
∈ RN×N , (20)

where by abusing the notation Ṽj is also the matrix containing the basis vectors of Ṽj (cf.
(18)) as its columns. For brevity we will use this double meaning from now on.

Now, recall that in the model (7) we observe a block-diagonal structure in W̃ ∈ R2N×2N ,
which corresponds to the disconnected dynamical behavior of both coordinates of all robots.
Hence, the subspace Ṽj ⊆ RN can be considered as either x- or y-coordinates and thus we
set

V x
j = span

((
<(vj)

0

)
,

(
=(vj)

0

))
⊆ R2N and V y

j = span

((
0
<(vj)

)
,

(
0
=(vj)

))
⊆ R2N .

As both V x
j ⊆ RN and V x

j ⊆ RN correspond to the same eigenvalue(s), we build their direct
sum and define

Vj = V x
j ⊕ V

y
j = span

((
<(vj)

0

)
,

(
=(vj)

0

)
,

(
0
<(vj)

)
,

(
0
=(vj)

))
⊆ R2N , (21)
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which by construction is an invariant subspace of the model (7). In fact, any initial configu-
ration in V x,y

j ⊆ RN stays in V x,y
j ⊆ RN as time proceeds since the matrix is block-diagonal

by changing coordinates (see (20)).

For this decomposition R2N =
⊕k

j=0 Vj the matrix W̃ ∈ R2N×2N in (7) becomes

V −1W̃V =



Λ0

Λ0

Λ1

Λ1

. . .

Λk
Λk


∈ R2N×2N (22)

with V = (V0 · · ·Vk) ∈ R2N×2N .
For j = 0, we recover the 2-dimensional synchronous subspace V0 = Syn ⊆ R2N of all

gathering points (in Z̃-coordinates). If j 6= 0, then there is a pair of eigenvalues λj ∈ C
and λj = λN−j ∈ C (or simply λk ∈ R for N = 2k even) belonging to Vj ⊆ R2N and
we call the real part <(λj) ∈ R convergence rate of Vj ⊆ R2N . Note that <(λj) < 1 for
j 6= 0 as we assume the underlying protocol to be gathering. Hence, Vj ⊆ R2N is a stable
invariant subspace of (7). In particular, solutions starting in one of the Vj ⊆ R2N remain
in Vj ⊆ R2N and converge with convergence rate <(λj) to 0. The smaller <(λj) ∈ R is,
the faster the solution converges. As an arbitrary initial configuration Z ∈ R2N can be
written as a linear combination of the basis vectors of all Vj ⊆ R2N , we conclude that for
j 6= 0 every part in Vj ⊆ R2N vanishes as time proceeds and only the synchronous part in
V0 = Syn ⊆ R2N remains (cf. Corollary 4.6). This part exactly represents the gathering
point, i.e., the average of the initial position, as proven in Proposition 3.13.

Moreover, if there is a convergence rate <(λs) ∈ R such that

<(λs) < <(λj) ∀j 6= s,

we call Vs ⊆ R2N strong stable invariant subspace. In this case, the convergence rate of
any configuration in Vs ⊆ R2N is faster that any configuration in any other Vj ⊆ R2N for
0 6= j 6= s.

For odd N ∈ N, every subspace Vj ⊆ R2N , j 6= 0, is 4-dimensional. However, if N = 2k is
even, the subspace Vk ⊆ R2N for j = k is only 2-dimensional which is due to the fact that
vk ∈ RN has on real-valued entries.

Remark 4.3.

(a) Our notion of convergence rate <(λj) of Vj ⊆ R2N has to be distinguished from the
definition of rate and order of convergence in the numerical analysis literature. There,
a sequence (zk)k∈N converging to z∗ is said to have order of convergence p, and with
rate of convergence µ, if

lim
k→∞

‖zk+1 − z∗‖
‖zk − z∗‖p

= µ,

for some positive constant µ > 0 if p > 1, and µ ∈ (0, 1) if p = 1.
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(b) In fact, because we consider a linear system (5) all initial configurations converge expo-
nentially fast to a gathering point for t→∞. Since in our linear model (7) the matrix is

given by −I2N +W̃ ∈ R2N×2N , the spectrum of W̃ ∈ R2N×2N , respectively W ∈ RN×N ,
is shifted by −1. Thus, the corresponding decay rates are given by −1 + <(λj).

By definition of Vj ⊆ R2N in (21) the spanning vectors correspond to configurations, where
all robots have only non-zero components in one coordinate (x or y). Thus, in particular for
visualization purposes of the configurations contained in Vj ⊆ R2N in the Euclidean plane,
we propose the following basis instead

Vj = span

((
<(vj)
=(vj)

)
,

(
=(vj)
<(vj)

)
,

(
<(vj)
−=(vj)

)
,

(
−=(vj)
<(vj)

))
⊆ R2N . (23)

Here, the later three basis vectors (considered as points/robots in the Euclidean plane) are
reflections of the first one. In this sense, we say vj ∈ CN , respectively the configuration

(<(vj),=(vj))
T ∈ R2N , generates the subspace Vj ⊆ R2N . In particular, the x-coordinate of

the i-th robot is given by the real part of the i-the entry of vj ∈ CN , while its y-coordinate

is the corresponding imaginary part. Hence, the generating configuration (<(vj),=(vj))
T ∈

R2N of the stable invariant subspaces Vj ⊆ R2N can be visualized as in Figure 5 by simply
changing the axis labels to x and y. However, note that by choosing the adapted basis (23),
the block structure into blocks Λj in (22) is slightly destroyed as we will get dimVj×dimVj-
dimensional blocks instead.

Finally, we summarize the results found above in the following theorem and state that
the 2N -dimensional state space of a linear circulant gathering protocol can decomposed as
follows.

Theorem 4.4. For a linear circulant gathering protocol of N ∈ R robots there exist a
family of stable invariant subspaces (Vj)

k
j=1 ⊆ R2N with convergence rates <(λj) < 1 and a

2-dimensional synchronous subspace Syn ⊆ R2N such that

R2N = Syn⊕

 k⊕
j=1

Vj

 , where (24)

(i) if N = 2k + 1 is odd, then every subspace Vj ⊆ R2N is 4-dimensional.

(ii) if N = 2k is even, then the subspace Vk ⊆ R2N is 2-dimensional, whereas the remaining
Vj ⊆ R2N , j 6= k, are 4-dimensional.

Moreover, each subspace Vj ⊆ R2N is spanned by a generating eigenvector vj ∈ CN of the
weight matrix W ∈ RN×N in the sense that

Vj = span

((
<(vj)
=(vj)

)
,

(
=(vj)
<(vj)

)
,

(
<(vj)
−=(vj)

)
,

(
−=(vj)
<(vj)

))
⊆ R2N .

As indicated in Remark 4.2 (c) this decomposition in (24) is the same for every linear
circulant gathering protocol. Only the explicit values of the convergence rates <(λj) depend
on the protocol itself.
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Example 4.5. We apply Theorem 4.4 to the running examples in order to illustrate the
dynamical hierarchy of the decomposition (24). To this end, we explicitly compute the eigen-
values λj ∈ C, the corresponding convergence rates <(λj) ∈ R and visualize the generating

configurations (<(vj),=(vj))
T ∈ R2N .

(a) For the N-bug problem we have w = (0, 1, 0, . . . , 0)T ∈ RN (cf. Example 3.18 (a))
which by using the eigenvalue formula (16) gives us

λj =

N−1∑
i=0

wiω
ij = ωj = exp

(
2πji

N

)
= cos

(
2πj

N

)
+ i sin

(
2πj

N

)
(25)

and thus <(λj) = cos
(
2πj
N

)
for j = 0, 1, . . . , N − 1. For some choices of N ∈ N we

illustrate the convergence rates in Figure 6.
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Figure 6: Illustration of the convergence rates <(λj) of the N-bug problem and the Go-
To-The-Middle protocol for N ∈ { 3, . . . , 8 } by red stars. For reference the cosine curve
is also plotted in blue. As observed in Remark 4.2 (b) the convergence rates <(λj) are
symmetrically distributed (for j 6= 0).

Note that they are strictly decreasing in j (up to k), i.e., <(λj) > <(λj+1) for j <
k. Hence, the stable subspaces Vj ⊆ R2N are hierarchically ordered such that any
configuration Z ∈ Vj converges faster to a gathering point than any other configuration

Z̃ ∈ Vi for i < j. For N = 6 and N = 6 their generating configurations are visualized
in Figure 5.

In particular, this model has a strong stable subspace Vk ⊆ R2N with corresponding
convergence rate <(λk) = cos

(
2πk
N

)
. For N = 2k even, this strong stable subspace is

2-dimensional and <(λk) = −1. Its generating configuration is illustrated in the right
panel of Figure 5a. On the other hand, for N = 2k + 1 odd, it is 4-dimensional with

<(λk) = cos
(

2πk
2k+1

)
. This is due the fact that the multiplicity of the eigenvalue λk is

doubled in X- and Y -coordinates.
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(b) Since the Go-To-The-Middle protocol is symmetric, we have real-valued eigenvalues
λj ∈ R (cf. Remark 4.2 (b)), i.e., they coincide with the convergence rates <(λj). Using
the eigenvalue formula (16) with w = (0, 12 , 0, . . . ,

1
2)T ∈ RN we compute

λj = <(λj) =
1

2
<
(
ωj
)

+
1

2
<
(
ω(N−1)j

)
=

1

2
cos

(
2πj

N

)
+

1

2
cos

(
2πj(N − 1)

N

)
= cos

(
2πj

N

)
for j = 0, . . . , N − 1.

Observe that the convergence rates for this protocol are the same as for the N-bug prob-
lem discussed in (a) whose rates are illustrated in Figure 6. In particular, we obtain the
same hierarchical decomposition. Note that, from the dynamical systems perspective
both models gather at the same speed. As the decomposition (24) is independent of the
generating vector w ∈ RN , the generating configurations are also visualized in Figure 5.

(c) The generating weight vector w = ( 1
N , . . . ,

1
N )T ∈ RN of the Go-To-The-Average

protocol yields the eigenvalues

λj =
1

N

N−1∑
i=0

ωij =

{
1, if j = 0,

0, if j 6= 0,

since the average of the N -th roots of unity vanishes for j 6= 0. Again, by the symmetry
of the protocol all eigenvalues λj are indeed real and thus coincide with the convergence
rates. In particular, for this protocol we have <(λj) = 0 for all j 6= 0 and every
configuration converges with the same speed. Even though Theorem 4.4 decomposes
the state space into stable subspaces Vj ⊆ R2N (also shown in Figure 5), they cannot
be distinguished by their convergence rates <(λj) ∈ R.

For the dynamics of a given arbitrary initial configuration Z̃ ∈ R2N an immediate conse-
quence of Theorem 4.4 is the following.

Corollary 4.6. Let Z̃(0) = (X(0), Y (0)) ∈ R2N be an initial configuration and the state
space R2N be decomposed as in (24). Then the solution Z̃(t) ∈ R2N of the linear gathering
protocol (7) with initial condition Z̃(0) ∈ R2N can be written as

Z̃(t) = Z̃∗ +
k∑
j=1

αj(t) Ξj(t), where (26)

(i) Z̃∗ = (X∗, Y ∗) = (x∗, . . . , x∗, y∗, . . . , y∗) is the final gathering point of Z̃ ∈ R2N . In
particular, x∗ = 1

N

∑N−1
i=0 Xi(0) and y∗ = 1

N

∑N−1
i=0 Yi(0).

(ii) αj(t) = exp((−1 +<(λj))t) ∈ R is the exponentially decaying coefficient corresponding
to Ξj(t) ∈ Vj.

(iii) by abusing notation, Ξj(t) = Vjβj(t) for some coefficient vector βj(t) ∈ RdimVj with
constant norm, i.e., ‖βj(t)‖ = ‖βj(0)‖ for all t ≥ 0.

28



Example 4.7. To conclude the article, we illustrate the consequences of Corollary 4.6 for
the N-bug problem. For N = 7, we show in Figure 7a a random initial configuration
Z̃ ∈ R2N as well as its final gathering point Z̃∗ ∈ R2N . The corresponding exponentially
decaying coefficients αj(t) ∈ R are plotted in Figure 7b.
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(a) Random initial configuration Z̃(0) ∈ R2N

and its gathering point Z̃∗ ∈ R2N (red cross)
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(b) Trajectory of the corresponding decaying

coefficients αj(t) ∈ R of Z̃(t) ∈ R2N

Figure 7: Visualization of a random initial configuration Z̃(0) ∈ R2N and its gathering
point Z∗ ∈ R2N (red cross) in the Euclidean plane for N = 7 in (a). Its corresponding
decaying coefficients αj(t) ∈ R are shown in (b). Note that αj(t) ∈ R decreases faster for
increasing j, which illustrates the dynamical hierarchy discussed in Example 4.5 (a).

Moreover, the initial decomposition into Ξj(0) ∈ Vj is visualized in Figure 8a, whereas
the coefficients βj(t) ∈ RdimVj are shown in Figure 8b.

A related short movie of the simulation of Z̃(t) ∈ R2N and Ξj(t) ∈ Vj can be found online
as a supplementary file at this page.
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A. Technical Details of Section 3

Proof of Proposition 3.4. (i) =⇒ (ii): Let us first assume that Z∗ ∈ R2N is an equilibrium
point of (5). In particular, f(Z∗) = z∗. In transformed coordinates, the equilibrium point
is given by Z̃∗ = (X∗, Y ∗) = (x∗, . . . , x∗, y∗, . . . , y∗) ∈ R2N and the right hand side of (7)
vanishes in Z̃∗ ∈ R2N . We obtain,

W̃Z̃∗ = I2N Z̃
∗,

which is equivalent to
WX∗ = X∗ and WY ∗ = Y ∗

Since X∗ = x∗ · (1, . . . , 1)T ∈ RN , this completes the proof of the first direction.
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(ii) =⇒ (iii): Let (1, . . . , 1)T ∈ RN be an eigenvector of W ∈ RN×N to the eigenvalue
1. Then

N−1∑
j=0

wi,j = (W (1, . . . , 1)T )i

= ((1, . . . , 1)T )i

= 1

for all i ∈ { 0, . . . , N − 1 }, which proves (iii).
(iii) =⇒ (i): Assume that all rows of the weight matrix W ∈ RN×N sum to 1 and let

Z∗ ∈ R2N be an arbitrary gathering point, i.e., Z̃∗ = (X∗, Y ∗) = (x∗, . . . , x∗, y∗, . . . , y∗) ∈
R2N in transformed coordinates. Then

(WX∗)i =
N−1∑
j=0

wi,j · x∗ = x∗

for all i ∈ { 0, . . . , N − 1 } and by the same argument also (W ∗Y ∗)i = y∗. In particular, we
obtain

W̃Z̃∗ = (x∗, . . . , x∗, y∗, . . . , y∗)T = I2N Z̃
∗.

This implies that Z̃∗ ∈ R2N is a zero of the right hand side of (7) and in turn that Z∗ ∈ R2N

is an equilibrium of (5).

Proof of Proposition 3.7. Using Proposition 3.4 it suffices to prove that no point Z /∈ Syn is
an equilibrium point of (5) if and only if the geometric multiplicity of the eigenvalue 1 is 1.
This can be seen readily from the transformed system (7). In fact, any equilibrium satisfies

(
−I2N + W̃

)
Z̃ = 0 ⇐⇒ W̃Z̃ = Z̃ ⇐⇒

{
WX = X

WY = Y

in transformed coordinates Z̃ = (X,Y ) ∈ R2N . In particular, Z̃ ∈ R2N is an equilibrium
outside of Syn ⊆ R2N if and only ifX ∈ RN or Y ∈ RN is an eigenvector ofW ∈ RN×N to the
eigenvalue 1 that is linearly independent of (1, . . . , 1)T ∈ RN . Under the given assumptions,
this exists if and only if the geometric multiplicity of the eigenvalue 1 is greater than 1.

Proof of Proposition 3.8. (i) =⇒ (ii): Assume that any solution of (5) converges to an
equilibrium point Z ∈ R2N . We first consider the case that W ∈ RN×N has an eigenvalue
λ ∈ C with <(λ) > 1. As a simplification, we begin with λ ∈ R. Then λ > 1 and there
is a corresponding real eigenvector ξ ∈ RN . Note that Z̃(t) = exp ((λ− 1)t)(ξ, 0) is the
corresponding fundamental solution for j = 1 in (13) of the transformed system (7). In fact,

one readily computes
˙̃
Z(t) = (λ− 1)Z̃(t) and(

−I2N + W̃
)
Z̃(t) = exp ((λ− 1)t)

(
−I2N + W̃

)
(ξ, 0)

= exp ((λ− 1)t)(−1 + λ)(ξ, 0)

= (λ− 1)Z̃(t).
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Since λ− 1 > 0, we have ‖Z̃(t)‖ → ∞ for t→∞, which contradicts the assumption. If the
eigenvalue λ is complex the argument remains the same, however the computations become
slightly more complicated. In fact, replacing Z̃(t) with <(exp ((λ− 1)t)(ξ, 0)) yields the
same result.

Next, consider an eigenvalue λ 6= 1 with <(λ) = 1. That is, the eigenvalue is of the form
λ = 1 + iω for some ω ∈ R. Again omitting the details, Z̃(t) = <(exp ((λ− 1)t)(ξ, 0)) =
cos (ωt)<(ξ, 0)) for a complex valued eigenvector ξ ∈ CN is a fundamental solution of the
system (7) that does not converge to any equilibrium. In fact, it is a periodic solution.

Finally, consider the case that λ = 1 is an eigenvalue of W ∈ RN×m whose geometric
multiplicity is less than its algebraic multiplicity. Then there exist two linearly independent
vectors ξ, ζ ∈ RN such that ξ is an eigenvector and ζ a corresponding generalized eigenvector,
i.e., (W − IN )ζ = ξ. Then, Z̃(t) = (ζ, 0) + t(ξ, 0) is a fundamental solution of (7). Once
again, this solution does not converge to an equilibrium point, as ‖(ζ, 0) + t(ξ, 0)‖ → ∞ for
t→∞.

(ii) =⇒ (i): Assume that all eigenvalues λ ∈ C of W ∈ RN×N satisfy <(λ) < 1 or λ = 1
and that if λ = 1 is an eigenvalue then its algebraic and geometric multiplicities agree. Note
that for all fundamental solutions in (13) in the limit t → ∞ all terms are dominated by
the exponential as long as <(λi − 1) 6= 0.

Under our assumptions, the only situation in which <(λi−1) = 0 is given by the eigenvalue
λ1 = · · · = λ` = 1, where ` is the algebraic and geometric multiplicity. For these eigenvalues,
the two fundamental solutions in (13) are precisely of the form Zxi (t) = (ξi, 0) and Zyi (t) =
(0, ξi), where ξi ∈ RN are the corresponding eigenvectors of W ∈ RN×N for i = 1, . . . , ` –
note that no generalised eigenvectors exist. For all other eigenvalues λ`+1, . . . , λk we have
<(λi − 1) < 0. As a result, any linear combination of the fundamental solutions converges
to a linear combination of (ξ1, 0), . . . , (ξk, 0), (0, ξ1), . . . , (0, ξk). As any linear combination
of eigenvectors to the eigenvalue 1 constitutes another eigenvector, this linear combination
is a zero of the right hand side of (7) and therefore an equilibrium point.

Proof of Proposition 3.10. For any two vertices i, j ∈ { 0, . . . , N − 1 } of the interaction
graph, define i ∼ j if and only if there is an undirected path from j to i (if and only if
there is an undirected path from i to j). It can readily be seen that this constitutes an
equivalence relation on { 0, . . . , N − 1 }. Thus, it generates a partition P1, . . . , Pk ⊂ V such
that Pr 6= ∅, Pr ∩ Ps = ∅ if r 6= s, and P1 ∪ · · · ∪ Pk = { 0, . . . , N − 1 }, where i, j ∈ Pr if
and only if i ∼ j. These partitions are called the connected components of the interaction
graph. By definition, the interaction graph is weakly connected if and only if all vertices
are connected via undirected paths, i.e., if and only if k = 1.

Assume that the interaction graph is not weakly connected. Then k ≥ 2. Define P = P1

and Q = P2 ∪ · · · ∪ Pk. By construction, there are no paths between any vertices in P and
Q. In particular, there are no edges from any vertex in P to any vertex in Q and vice versa,
i.e., (j, i) ∈ E implies i, j ∈ P or i, j ∈ Q. Since the interaction structure is reflected in the
weight matrix W = (wi,j)

N−1
i,j=0, this in particular implies that wi,j = 0 whenever i ∈ P and

j ∈ Q or i ∈ Q and j ∈ P .
Then, we define Z∗ = (z∗1 , . . . , z

∗
N )T ∈ R2N as

z∗i =

{
(1, 1)T if i ∈ P,
0 if i ∈ Q.
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Considering this point as an initial configuration, we determine the robots’ behavior by
applying the right hand side of (5) to it. For i ∈ P we obtain

ż∗i = −z∗i +
N−1∑
j=0

wi,jz
∗
j

= −z∗i +
∑
j∈P

wi,jz
∗
j

=

−1 +
∑
j∈P

wi,j

 (1, 1)T

=

−1 +

N−1∑
j=0

wi,j

 (1, 1)T .

As the protocol is assumed to be gathering, we have
∑N−1

j=0 wi,j = 1 for all i ∈ { 0, . . . , N − 1 }
by Proposition 3.4 and we obtain ż∗i = 0. Similarly, for i ∈ Q we compute

ż∗i = −z∗i +
∑
j∈Q

wi,jz
∗
j

=

−1 +
∑
j∈Q

wi,j

 0

= 0.

Combining these two computations, we see that Z∗ ∈ R2N is an equilibrium point of (5).
However, as Z∗ /∈ Syn, the protocol cannot be gathering due to Proposition 3.7.

Proof of Proposition 3.12. Recall that the weight matrix W ∈ RN×N is irreducible, if the
underlying interaction graph is strongly connected. As furthermore all entries of W ∈ RN×N
are non-negative, we may apply the Perron-Frobenius theorem for non-negative matrices
(e.g. [Gan09, Theorem 2]). It tells us that the spectral radius ρ(W ) = max{|λ1|, . . . , |λk|},
where λ1, . . . , λk are the eigenvalues of W ∈ RN×N , is itself an eigenvalue λ = ρ(W ) of
W ∈ RN×N . It is called the Perron-Frobenius eigenvalue, which is real by definition and
all eigenvalues satisfy |λi| ≤ λ. Furthermore, according to the Perron-Frobenius theorem,
the Perron-Frobenius eigenvalue is simple. In particular, this implies <(µ) < λ for all
eigenvalues µ 6= λ, since λ is real. Finally, note that for irreducible, non-negative matrices
the Perron-Frobenius eigenvalue is also bounded by the minimal and maximal row sums of
W ∈ RN×N [Gan09, Remark 2], i.e.,

min
i

N−1∑
j=0

wi,j ≤ λ ≤ max
i

N−1∑
j=0

wi,j .

By assumption, all row sums satisfy
∑N−1

j=0 wi,j = 1 so that we have λ = 1. To summarize,

W ∈ RN×N has a simple eigenvalue λ = 1 and all other eigenvalues µ satisfy <(µ) < 1.
Furthermore, due to Proposition 3.4, the eigenvector to the eigenvalue λ = 1 is (1, . . . , 1)T ∈
RN . Hence, by Theorem 3.9, the protocol is gathering.
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Proof of Proposition 3.13. First, note that W ∈ RN×N has a simple eigenvalue 1 with
corresponding eigenvector (1, . . . , 1)T ∈ RN with all other eigenvalues having real part less
than 1, since it models a gathering protocol. As stated before, the solution Z̃(t) with
initial condition Z̃(0) of the linear system of ordinary differential equations in transformed
coordinates (7) is given by a linear combination of the fundamental solutions in (13). The
coefficients of this linear combination can be determined by setting t = 0 and requiring the
linear combination to be equal to Z(0). Setting t = 0 in (13), one immediately sees that
all fundamental solutions are reduced to precisely one of the eigenvectors and generalized
eigenvectors in (14) that has been copied into the X- or the Y -coordinates respectively. In
particular, solving for the linear coefficients boils down to solving

X(0) =
k∑
i=1

mi∑
j=1

ai,jξi,j and Y (0) =
k∑
i=1

mi∑
j=1

bi,jξi,j (27)

for the coefficients ai,j , bi,j ∈ R, where Z̃(0) = (X(0), Y (0)) ∈ R2N is the initial condition
Z(0) in transformed coordinates. Since the eigenvectors and generalized eigenvectors of
W ∈ RN×N constitute a basis of RN , both equations can uniquely be solved. It remains to
observe that all fundamental solutions satisfy

‖Zx,yi,j (t)‖ → 0 for t→∞,

for every eigenvalue λ 6= 1. For the simple eigenvalue 1 the corresponding fundamental
solutions are constant. Without loss of generality, we set λ1 = 1 and ξ1,1 = (1, . . . , 1)T ∈ RN
for the corresponding eigenvector (cf. Proposition 3.4). Then we have

Z̃(t)→ a1,1((1, . . . , 1)T , 0) + b1,1(0, (1, . . . , 1)T ) = (a1,1, . . . , a1,1, b1,1, . . . , b1,1)
T

for t→∞. In particular, the position of every robot converges to (a1,1, b1,1).

It remains to show that indeed (a1,1, b1,1) =
(

1
N

∑N
i=1 xi(0), 1

N

∑N
i=1 yi(0)

)
. To that end,

consider (27), which describes the decomposition of X(0) and Y (0) into the eigenbasis of
W ∈ RN×N . Since the eigenvalue λ1 = 1 is simple, the corresponding eigenspace is one-
dimensional. This allows us to compute the corresponding coefficients to be

a1,1 =
〈X(0), ξ1,1〉
〈ξ1,1, ξ1,1〉

=
1

N

N∑
i=1

xi(0),

b1,1 =
〈Y (0), ξ1,1〉
〈ξ1,1, ξ1,1〉

=
1

N

N∑
i=1

yi(0).

Proof of Proposition 3.14. The real matrix W ∈ RN×N is non-defective if and only if all
of its eigenvalues are real and their algebraic and geometric multiplicities coincide. If it is
additionally gathering, it has a simple eigenvalue 1 and all other eigenvalues satisfy λ < 1.
All fundamental solutions (13) are of the form

Z̃x(t) = e(λ−1)t(ξ, 0) or Z̃y(t) = e(λ−1)t(0, ξ)
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for some eigenvalue λ ∈ R with corresponding eigenvector ξ ∈ Rn. As any solution Z̃(t)
to (7) is a linear combination of the fundamental solutions, any coordinate entry of such
a solution is a linear combination of the exponential functions e(λ−1)t. More precisely, we
find fixed values αji ∈ R for i, j = 0, . . . , N − 1 – given by the coordinate entries of the
eigenvectors – such that

Z̃i(t) = α1
i e

(λ1−1)t + · · ·+ αNi e
(λN−1)t,

where λ0, . . . , λN−1 are the eigenvalues counting multiplicities. We then extract the original
coordinates using zi = (Z̃i, Z̃i+N ) and obtain

= e(λ0−1)t(α0
i , α

0
i+N ) + · · ·+ e(λN−1−1)t(αN−1i , αN−1i+N )

= e(λ0−1)ta0i + · · ·+ e(λN−1−1)taN−1i ,

where we have set aji = (αji , α
j
i+N ). We readily see

‖zi(t)− zj(t)‖ = ‖e(λ0−1)t(a0i − a0j ) + · · ·+ e(λN−1−1)t(aN−1i − aN−1j )‖

≤ e(λ0−1)t‖(a0i − a0j )‖+ · · ·+ e(λN−1−1)t‖(aN−1i − aN−1j )‖.

As all the aji ∈ R2 are fixed and all eigenvalues satisfy λ ≤ 1, the expression is non-increasing
in t which proves that no robots increase their distance.

Proof of Proposition 3.19. Throughout this proof, we use the convention that robot indices
are counted mod N , as outlined in Section 2.2. In particular, the equations of motion (5)
become

żi = −zi +
N−1∑
j=0

wjzi+j . (28)

Fix (j, i) ∈ E such that

‖zi(0)− zj(0)‖ = max
(l,k)∈E

‖zk(0)− zl(0)‖.

That is, robots i and j are furthest apart initially. We drop the time-dependence in notation
and compute

d

dt
‖zi − zj‖2 =

d

dt
〈zi − zj , zi − zj〉

= 2〈zi − zj , żi − żj〉

= 2

〈
zi − zj ,−zi +

N−1∑
k=0

wkzi+k + zj −
N−1∑
k=0

wkzj+k

〉

= 2

(
−‖zi − zj‖2 +

N−1∑
k=0

wk〈zi − zj , zi+k − zj+k〉

)
,

where we have used the linearity of the inner product and (28). Since all weights are
non-negative wk ≥ 0, we may apply the Cauchy-Schwarz inequality to the remaining inner

37



product and obtain

d

dt
‖zi − zj‖2 ≤ 2

(
−‖zi − zj‖2 +

N−1∑
k=0

wk‖zi − zj‖ · ‖zi+k − zj+k‖

)
. (29)

By assumption (j, i) ∈ E, which means wi,j 6= 0, where W = (wi,j)
N−1
i,j=0. Since W is a

circulant matrix, we have wi,j = wl, where l ∈ { 0, . . . , N − 1 } is such that j = i+ l mod N .
Then also i+k+l mod N = j+k mod N and wi+k,j+k = wl 6= 0 for any k ∈ { 0, . . . , N − 1 }.
Thus, also (j + k, i+ k) ∈ E. In particular, this implies that the sum in (29) contains only
terms ‖zi+k − zj+k‖ for (j + k, i + k) ∈ E. By assumption, these satisfy ‖zi+k − zj+k‖ ≤
‖zi − zj‖. Hence, we may further estimate

d

dt
‖zi − zj‖2 ≤ 2

(
−‖zi − zj‖2 +

N−1∑
k=0

wk‖zi − zj‖ · ‖zi − zj‖

)

= 2‖zi − zj‖2
(
−1 +

N−1∑
k=0

wk

)
.

Since the protocol is assumed to be gathering, Theorem 3.16 implies the weight matrix is
consistent

∑N−1
k=0 wk = 1 and we conclude

d

dt
‖zi − zj‖2 ≤ 0.

Hence, the distance of the two maximally distant robots cannot increase initially. By the
same argument as before, we can extend this statement to arbitrary t > 0, since we may
always use z0(t), . . . , zN−1(t) as a new initial configuration.

Note that we may not rule out the situation that two robots k, l with (l, k) ∈ E that are
not maximally distant increase their distance. However, assume that ‖zk(t∗) − zl(t∗)‖ > C
for some t∗ > 0. Since ‖zi(t) − zj(t)‖ is non-increasing, there must be some 0 < t < t∗

at which ‖zk(t) − zl(t)‖ = ‖zi(t) − zj(t)‖ ≤ C by continuity of the solution z(t). Then we
may again use z0(t), . . . , zN−1(t) as a new initial configuration and the argument above with
the roles of (j, i) and (l, k) switched yields that ‖zk(t)− zl(t)‖ cannot increase any further
contradicting the assumption. In particular, k and l cannot lose sight of each other. This
completes the proof.
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